

First Critical Experiment at NCERC

Rene Sanchez, David Hayes, Joetta Goda, and William Myers

Outline

- Background
- Purpose
- Description of the Experiment (Rules, 1/M, etc.)
- Experimental Results
- Conclusions

- Cleo Byers, Memo, "Nuclear Criticality Safety Orientation," N-2, January 1973.
- Cleo Byers and Tom McLaughlin produced the outline of the Criticality Safety Course as well as the experiments that were to be performed (1974).
- First Criticality Safety Class is given (1975).

Demonstration for Criticality Safety Orientation

—Purpose:

To demonstrate *hand-stacking* techniques and approach to criticality by *remote operation*. The size of a well-moderated, reflected assembly and a safe size for handling will be illustrated.

Critical Masses of Homogeneous Water-Moderated U(93.2) Spheres

NATIONAL LABORATORY

- Everyone is responsible for safety
- Initial and second fuel loadings must be safe
- Follow the 1/M critical approach curve
- Limit hand-stacking ("Three-Quarter Rule")
- Limit rate of fuel addition ("Half-Way Rule")

Approach to Critical – Three Quarter Rule

 No hand-assembly step shall be performed if the resulting active mass is greater than three-quarters of the estimated critical mass

<u>OR</u>

 No hand-assembly step shall be performed if the resulting multiplication (M) will exceed 10 (k_{eff} = 0.9).

Basis—For near equilateral fast-neutron systems, a central-source multiplication (M) of 10 (k_{eff} = 0.9) corresponds to about 75% of the critical mass.

Approach to Critical – "Half-Way Rule"

- No single-step addition goes more than half-way to critical <u>OR</u>
- No single-step addition shall double the multiplication.

 Basis — For a linear system, the next addition of the same size would be critical.

- Use an effectively placed neutron source
- Use experiment design-geometry control
- Use remote assembly safety system

Critical Mass Determination (1/M)

Step	Action
1	Determine base count Rate $M = \frac{New \text{ count rate}}{Base \text{ count rate}}$
2	Add additional material (fuel, reflector, etc.).
3	Measure new count rate and plot new 1/M.
4	Extrapolate to critical mass $(1/M) = 0.$
5	Determine safe addition for next step.
6	Repeat steps 2-5 to approach critical.

Fissile Material

Each foil weighed approximately 70 g.

Foils were 93.19 wt% ²³⁵U

Lucite Plates (New)

Dimensions:

Two types 14" x 14" x 0.46" 14" x 14" x 0.92"

Density:

1.18 g/cc

Planet Operations – Handstacking

- Began Monday, June 13, 2011
- 6 units to 14 units

Hand-stacking Part of the Experiment

Handstacking 1/M

	Foils	Counts	1/M	Predicted Criticality
0	6.000	43921.000	1.000	Inf
1	7.000	49373.000	0.890	15.056
2	8.000	56563.000	0.776	14.867
3	9.000	65159.000	0.674	15.580
4	10.000	74769.000	0.587	16.780
5	11.000	85601.000	0.513	17.903
6	12.000	98567.000	0.446	18.602
7	13.000	115300.000	0.381	18.891
8	14.000	136241.000	0.322	19.506

 $\frac{1}{2}$ Rule = 16.75 $\frac{3}{4}$ Rule = 14.63

Criticality Safety Class Experiment "Split-Stack" for Remote Assembly

Planet Operations – Remote Approach-to-Critical

- Tuesday, June 14, 2011
- 14 units to 23 units
- 10 units on Planet moveable platen
- Remainder on Planet
 stationary platform

	Foils	Counts	1/M	Predicted Criticality
0	14.000	34298.000	1.000	Inf
1	15.000	41092.000	0.835	20.048
2	17.000	60098.000	0.571	21.324
3	19.000	95840.000	0.358	22.363
4	20.000	127741.000	0.268	23.004
5	21.000	184391.000	0.186	23.255
6	22.000	325201.000	0.105	23.310
7	23.000	1070016.000	0.032	23.437

$$k_{eff} = (\frac{23.52}{23.437})^{0.3} = 1.001061$$
$$\frac{\rho}{\beta_{eff}} = \frac{k_{eff} - 1}{k_{eff} \beta_{eff}} = 16.3 cents$$

1/M versus Separation (23.52 foils)

June 15, 2011

Planet Operations

 New Plates (0.46")
 Average

 Critical Mass: 1, 606 grams of Uranium (23.42 Foils)
 68.68 g

 Old Plates (TA-18) (0.5") ~ 2004
 68.68 g

 Critical Mass: 1490.35 grams of Uranium (21.7 Foils)
 68.68 g

Old Plates (TA-18) (0.5") ~1994

Critical Mass: 1401.88 grams of Uranium (20.2 Foils) 69.40 g

Conclusions

- First critical experiment was successfully completed on June 15, 2011.
- The differences between this experiment and the one that was performed at TA-18 have been resolved.
- We repeated the TA-18 critical experiment using the old Lucite plates and there was difference.

