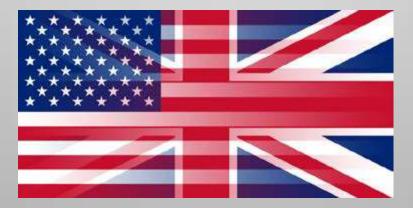
Comparison between the US and UK Criticality Safety Personnel Training Program Guidance

Presented at 2013 American Nuclear Society Annual Meeting June 18, 2013

Lawrence Livermore National Laboratory


Andrew Wysong

LLNL-PRES-639053

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Introduction

- Joint Working Group 30 Exchange
 - US criticality safety engineer placed in Atomic Weapons Establishment Criticality Safety Group
 - One task was to benchmark US and UK training guidance in search of unique topics and best practices

Lawrence Livermore National Laboratory

US DOE CS Training Guidance

- DOE-STD-1135-99 Guidance for Nuclear Criticality Safety Engineer Training and Qualification
 - Contains Ten Main Sections
 - 1. Nuclear Theory
 - 2. Calculational Methods
 - 3. Critical Experiments and Data
 - 4. Rules, Standards, and Guides
 - 5. Nuclear Criticality Safety Evaluations
 - 6. Safety Analysis and Control
 - 7. Criticality Alarm Systems (CAS) and Criticality Detection Systems (CDS)
 - 8. Accountability Practices
 - 9. Hands on Experimental Training
 - 10. Process/Facility Knowledge

UK CS Training Guidance

- UK has little official guidance from Health and Safety Executive
 - Many CS Programs utilize UK Working Party on Criticality (WPC) document The WPC Criticality Safety Competence Framework
 - Contains Four Main Sections
 - 1. Criticality Background Knowledge
 - 2. Criticality Safety Management
 - 3. Criticality Assessor Methods
 - 4. Criticality Safety Assessment Methodologies

Method of Comparison

- Matrix was created with eight main subject areas important to CS training
 - 1. Academic
 - 2. Experimental
 - 3. Assessment Methodology
 - 4. Assessment Analysis
 - 5. Rules, Standards, and Guides
 - 6. Alarms, Accidents, and Response
 - 7. Process/Facility Knowledge
 - 8. Special Concerns

Method of Comparison

- Many unique training guidance subject areas are result of difference in regulatory systems or organizational arrangement
 - UK Example: As Low As Reasonably Practicable (ALARP) and Optioneering
 - Not required in US regulations
 - US Example: Criticality Alarm System Placement, Use, and Testing
 - Responsibility lies within purview of Radiological Instrumentation and/or Dosimetry organizations in UK

Unique Guidance Subjects - UK

- Nine unique topics not resulting from regulatory or organizational differences:
 - Implications of Controls
 - Nuclear Data
 - Engineering Drawings
 - Reactor Physics
 - Reactor Kinetics and Transients
 - Fissile Assay Methods
 - Waste and Long Term Disposal
 - Burn-Up Credit
 - Mixed Oxide Fuels

Unique Guidance Subjects - US

- Two unique topics not resulting from regulatory or organizational differences:
 - Hands on Criticality Safety Training
 - Container Labeling and Postings

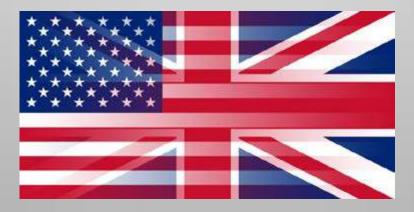
Best Practices

Topics that should be included in US guidance

- Implications of Controls
 - Helps to mitigate negative secondary effects on operations and personnel utilizing the derived criticality safety controls
- Nuclear Data
 - Improves CS engineer understanding of computer calculations and the results/conclusions that are relied upon
- Engineering Drawings
 - Allows more accurate and efficient use of material/equipment dimensions for use in analysis


Best Practices

- Topics that should be included in UK guidance
 - Hands-On Criticality Safety Training
 - Provides more concrete understanding of main factors that effect reactivity
 - Forces CS engineer to be more mindful of challenges faced by operators working with material under CS constraints
 - Container Labeling and Postings
 - Allows CS engineer to reduce the occurrence of human error


Increased Collaboration

- Beneficial to both US and UK programs
 - Increased access to larger and more diverse training material
 - Benchmarking of training guidance to respective CS program
- One successful example is the US DOE Nuclear Criticality Safety Program Hands-On Training and Education Course
 - Allows UK CS professionals opportunity to gain Hands-On experience that does not exist domestically
- Other opportunities for increased collaboration:
 - New facility build
 - Retrofitting of old facilities
 - Fabrication of weapons components
 - Assembly/disassembly of weapons

Conclusion


- The US and UK share many commonalities in CS training guidance
- Several unique subject areas have been identified as Best Practices
- Continued collaboration between US and UK CS programs is in the best interest of both countries

References

- 1. "Guidance for Nuclear Criticality Safety Engineer Training and Qualification," DOE-STD-1135-99, Department of Energy, Washington, DC, USA, September 1999.
- 2. "Criticality Safety Engineer Training and Qualification Program," ANSI/ANS-8.26-2007, American National Standard, American Nuclear Society, La Grange Park, IL, USA, June 20, 2007.
- 3. "Licence Condition Handbook," ONR, October 2011 (see LC10), http://www.hse.gov.uk/nuclear/silicon.pdf.
- 4. "Assessment of Licensees' Arrangements for Training and Assuring Personnel Competence", T/AST/027, HSE, September 22, 2010, http://www.hse.gov.uk/foi/internalops/nsd//tech_asst_guides/tast027.htm.
- 5. "The WPC Criticality Competence Framework," WPC/P243 Issue 1, Working Party on Criticality, UK, November 2008.
- 6. "Safety Assessment Principles for Nuclear Facilities," HSE, 2006, http://www.hse.gov.uk/nuclear/saps/index.htm.
- 7. "Measurement and Development of Cross Section Sets," NCSET Mod 13, Nuclear Criticality Safety Engineer Training, Nuclear Criticality Safety Program, Department of Energy, http://ncsp.llnl.gov/trainingMain.html.
- 8. "Nuclear Criticality Safety Program Hands-On Training Course," Nuclear Criticality Safety Program, Department of Energy, http://ncsp.llnl.gov/classMain.html.

