Release of ENDF/B-VII.1-based Continuous-Energy Neutron Cross-Section Data Tables for MCNP

Jeremy Lloyd Conlin Steven J. Gardiner D. Kent Parsons A. C. Kahler M. Beth Lee Morgan C. White

Los Alamos National Laboratory PO Box 1663, Los Alamos NM 87544

June 16, 2013

LA-UR-13-24077

Introduction

ENDF/B-VII.1

Evaluated Nuclear Data File Version 7.1

- Released December 2011
- Neutron sublibrary:
 - 423 evaluations, 32 new in ENDF/B-VII.1
 - Elemental evaluations for V and Zn became isotopic evaulations: ⁵⁰V, ⁵¹V and ⁶⁴Zn, ⁶⁵Zn, ⁶⁶Zn, ⁶⁷Zn, ⁶⁸Zn
 - 10 excited-state evaluations, 413 ground-state evaluations

ENDF71x

ENDF71x

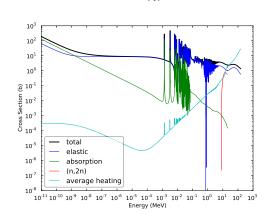
ENDF/B-VII.1-based ACE data tables

- 423 evaluations
- 7 temperatures
 - 293.6 K
 - 600 K
 - 900 K
 - 1200 K
 - 1200 K
 - 2500 K
 - 0.1 K
 - 250 K

- 2 modifications from ENDF/B-VII.1
 - ⁵⁶Fe, σ_s
 - 61 Ni, σ_s
- Processed using NJOY Version 99.393

Modifications to ENDF/B-VII.1

⁵⁶Fe


• $0.0 \, \text{b} \, \sigma_s \, (\text{MT=2})$

• $E = 1.1971 \, \text{MeV}$

⁶¹Ni

- $0.0 \, \text{b} \, \sigma_s \, (\text{MT=2})$
- E = 0.7429251 0.743962 MeV
- E = 0.8184120 MeV

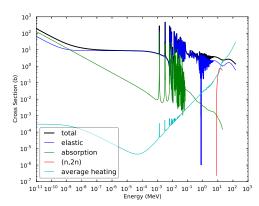
 σ_s Changed to $1 \times 10^{-6}\,\mathrm{b}$

⁶¹Ni

Modifications to ENDF/B-VII.1

⁵⁶Fe

• $0.0 \, \text{b} \, \sigma_s \, (\text{MT=2})$


• E = 1.1971 MeV

 ^{61}Ni

- $0.0 \, \text{b} \, \sigma_s \, (\text{MT=2})$
- E = 0.7429251 0.743962 MeV
- $E = 0.8184120 \, \text{MeV}$

 σ_s Changed to 1×10^{-6} b

Slide 4

Verification of ENDF71x

checkace

- Appropriate threshold representation
- Negative PDFs
- Unphysical secondary particle energies
- Heating balance problems negative heating values
- Partial xs summing to total

Verification of ENDF71x

checkace

- Appropriate threshold representation
- Negative PDFs
- Unphysical secondary particle energies
- Heating balance problems negative heating values
- Partial xs summing to total

Visual inspection of cross sections

- Identify gross errors
 - σ_t , MT=1
 - σ_a , MT=102
 - σ_{es} , MT=2
 - $\sigma_{(n,2n)}$, MT=16
 - average heating number $kerma^*\sigma_t$

Verification—Negative PDFs

¹⁵³Eu

- Originates in ENDF/B-VII.1 evaluation
- MT=91, (n, n')—n' in the continuum
- Negative PDF values set to 0.0 in ENDF71x ACE data tables

Verification—Energy Balance

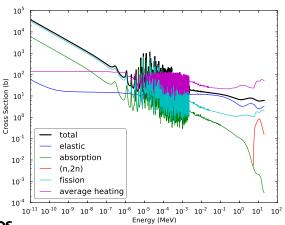
Negative Heating Values

- 41 evaluations
- Problems when performing energy deposition or kerma calculations
- Probably not a major impact on calculations
- These evaluations (and others) have been identified by Bob MacFarlane as having problems with energy balance.
 http://t2.lanl.gov/data/endf/ebalVII.1/summary.html
- Evaluations need to be improved in future ENDF/B-VII.1 releases

Verification—Unresolved Resonance Region

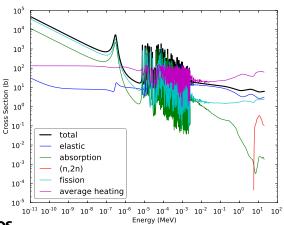
Sum of partial cross sections don't add to the total in URR

- Most errors are close to round-off
- 15 evaluations—listed in paper/documentation
- NJOY PURR module not run for these evaluations
 - Average cross sections are used instead of an unresolved resonance representation


Visual Inspection of Major Cross Sections

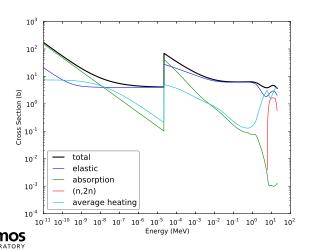
- Visual inspection
 - 1. σ_t , MT=1
 - 2. σ_a , MT=102
 - 3. σ_{es} , MT=2
 - 4. $\sigma_{(n,2n)}$, MT=16
 - 5. average heating number $kerma^*\sigma_t$

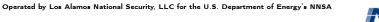
Visual Inspection of Major Cross Sections 235||



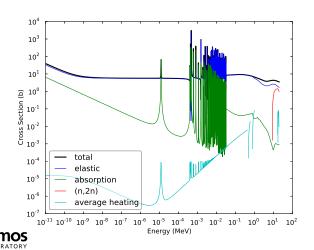
Visual Inspection of Major Cross Sections 239 P11




Visual Inspection of Major Cross Sections ⁵⁶Fe



Visual Inspection of Major Cross Sections ¹²³S_n



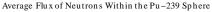
Slide 9

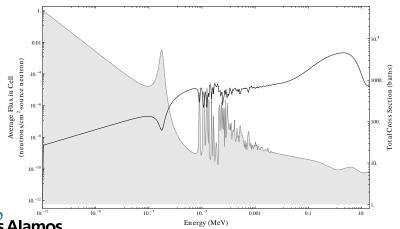
Visual Inspection of Major Cross Sections 98 Mo

Slide 9

Mechanical Testing

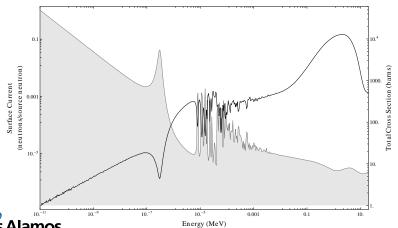
- 4 cm sphere
- One isotope
- Nominal density for element
- $1 \times 10^{-11} \text{ MeV} \le E \le 20 \text{ MeV}$
- Three energy distributions:
 - 1. Uniform
 - 2. Watt fission spectrum
 - 3. Room temperature Maxwellian


- mode n p
- 1×10^9 histories
- Tallies:
 - F1 Outer surface current
 - F2 Outer surface flux
 - F4 Volume flux
- 500 logarithmically-spaced energy bins



Mechanical Testing

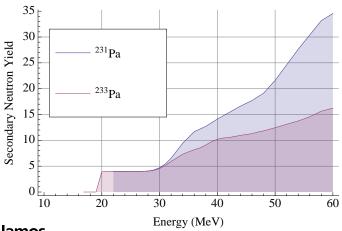
Results



Slide 11

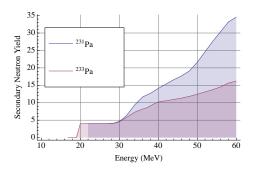
Mechanical Testing

Results


Surface Current of Neutrons Leaving the Pu –239 Sphere

Slide 11

Mechanical Testing—(Too) Many Secondaries



Mechanical Testing—(Too) Many Secondaries

• MT=5,
$$(n,*)$$
 231,233 Pa

- < 12 secondaries assumed
- If > 12 secondaries:
 - Array bounds exceeded
 - Unknown quantities changed
 - (very) Negative energies

This has not been fixed in MCNP

Validation Testing

- 423 evaluations
- 7 temperatures
- 3 source energy distributions
- MCNP5 and MCNP6
- 1×10^9 histories each
- 715 critical benchmarks, 13,702 CPU hours

Validation Testing

- 423 evaluations
- 7 temperatures
- 3 source energy distributions
- MCNP5 and MCNP6
- 1×10^9 histories each
- 715 critical benchmarks, 13,702 CPU hours

- 17,766 MCNP runs
- $\bullet > 18 \times 10^{12}$ histories
- 264,841 CPU hours

Validation Testing

- 423 evaluations
- 7 temperatures
- 3 source energy distributions
- MCNP5 and MCNP6
- 1×10^9 histories each
- 715 critical benchmarks,
 13.702 CPU hours

- 17,766 MCNP runs
- $\bullet > 18 \times 10^{12}$ histories
- 264,841 CPU hours

Most heavily verified and validated ACE data library ever released with MCNP

ZAIDs in ENDF71x

ZA Suffix	SZA eXtension	Temperature
80c	710nc	293.6 K
81c	711nc	600 K
82c	712nc	900 K
83c	713nc	1200 K
84c	714nc	2500 K
85c	715nc	0.1 K
86c	716nc	250 K

92235.80c = 92235.710nc

Listing of Available ACE Data Tables

(formerly*known as Appendix G of the MCNP Manual)

Jeremy Lloyd Conlin, D. Kent Parsons, Steven J. Gardiner, Mark Gray, A. C. Kahler, M. Beth Lee, and Morgan C. White

> Nuclear Data Team, XCP-5 Los Alamos National Laboratory

> > May 10, 2013

Conclusion

- ENDF/B-VII.1—released December 2011
 - 423 evaluations, 32 new
 - Best neutron cross section data available
- ENDF71x
 - Based on ENDF/B-VII.1—processed with NJOY version 99.393
 - 7 temperatures suitable for reactor and laboratory calculations
 - Extensive validation and verification
 - Available with release of MCNP6
- New document listing available ACE data tables—no longer an appendix to MCNP manual

