

MCNP Simulations in Support of the Heat Pipe in Flat-Top Experiment

Rene Sanchez, David Hayes, John Bounds, Joetta Goda, Travis Grove, and William Myers

Outline

- Background
- Purpose
- Description of the Experiment
- Description of the Simulations
- Conclusions

Background

 For many years, NASA has dependably relied on radioisotope thermoelectric generators (RTGs) to power science missions

 David Poston, et al, "A Simple, Low-Power Fission Reactor for Space Exploration Power Systems," Proceedings of Nuclear and Emerging Technology for Space, February 2013.

First experiment is performed in September 2012.

Purpose

- MCNP Simulations in Support of the Heat Pipe in Flat-Top Experiment
 - To demonstrate that a heat pipe coupled to a Stirling engine could generate electricity from a nuclear generated heat source
 - The simulations presented in this summary provided the basis to load the Flat-Top assembly with enough excess reactivity that would produce the energy needed for this experiment.

Flat-Top Assembly

- Simple one-dimensional spherical geometry benchmark assembly that replaced the Topsy assembly at Los Alamos.
- Used originally for critical mass studies for thick uranium reflected systems in spherical geometry.
- 1000 kg natural (0.7 wt.% ²³⁵U) uranium reflector
 - 500 kg hemisphere.
 - Two 250 kg quarter-sphere safety blocks.
 - Re-configurable pedestal to accommodate different cores.
- Can operate in "free run" mode up to several kilowatts
 - Temperature increases of up to 300°C

Flattop Core Design

Plan View

Heat Pipe in Flat-Top Assembly

Heat Pipe in Flattop

Heat Pipes

- Fabricated by Advanced Cooling Technology, Inc.
- Contained between 0.015 and 0.065 liters of water
- Approximate dimensions:
 0.5-in OD and 45 inches in length
- Heat pipe is a device that is used to transfer energy from one solid surface to another

Heat Pipes

Behavior of Critical Systems

MCNP Simulations

- The MCNP simulations were performed using ENDF/B-VII neutron cross section data
- Each simulation had a total of three million histories. The first 50 generations were skipped
- The MCNP code was operated in the k-code mode

Base Case (First MCNP Simulation)

$$k_{eff}$$
= 1.00004 \pm 0.00038

This base case simulation represents $0.50\$ \pm 0.01$

Second MCNP Simulation (NU rod replaced with water)

$$k_{eff} = 0.99999 \pm 0.00037$$

Assuming a β_{eff} of 0.00664

$$\Delta \rho(\$) = (k_2 - k_1)/(\beta_{\text{eff}} k_1^* k_2)$$

 $\Delta \rho(SS-Base\ Case) = -0.0075\$ \pm 0.08$ or +0.4925\$ \pm 0.08 based on the measured excess reactivity of the assembly

Next MCNP Simulation (Entire GH and NU rod replaced with water

$$k_{eff}$$
= 0.99438 \pm 0.00037

$$\Delta \rho(\$) = (k_2 - k_1)/(\beta_{\text{eff}} k_1^* k_2)$$

 $\Delta \rho(TS - Base Case) = -0.86\$ \pm 0.08$ or $-0.36\$ \pm 0.08$ based on the measured excess reactivity of the assembly

Next MCNP Simulation (Heat Pipe in the GH)

$$k_{eff}$$
= 0.99210 \pm 0.00029

$$\Delta \rho(\$) = (k_2 - k_1)/(\beta_{\text{eff}} k_1^* k_2)$$

 $\Delta \rho$ (FS – Base Case) = -1.21\$ \pm 0.07 or -0.71\$ \pm 0.07 based on the measured excess reactivity of the assembly

Split cap vs Full HEU Cap

Based on the previous simulation

-0.71\$ \pm 0.07 (hp with Split Cap)

+1.52\$ \pm 0.01 (hp with Full Cap)

+0.81\$ ± 0.07

 \pm 0.81\$ \pm 0.15 (hp water content)

The measure excess reactivity with heat pipe in place and Full HEU cap was

 $0.67\$ \pm 0.01$

Temperature Coefficient of Reactivity

$$\frac{\Delta \rho}{\Delta T} (\phi/^{\circ}C)$$

Negative – temperature reactivity quench Positive – autocatalytic or divergent reaction

Assembly	Approx. Temp. Coeff.
Godiva IV, Big Ten, Flattop U	-0.3 (¢/°C)
Flattop delta phase Pu	-0.2(¢/°C)
SHEBA U(5) solution	-4.0 to -10.0 (¢/°C)
CNPS(U(20)O ₂ -C matrix	-1.2 (¢/°C)

Contributions from expansion, Doppler shifts, geometry changes

$$\Delta T = \frac{\Delta \rho}{\Delta \rho / \Delta T} = \frac{0.67\$}{0.003\$/^{\circ}C} = 223.3^{\circ}C$$

Conclusions

• Simulations agreed quite well with the experimental value of reactivity

• The experiment was planned, designed and executed in a three months

• The experiment was successful in producing electricity by using the heat pipe to transfer the heat from the core to the Stirling engine

