

K-25/K-27 Buildings Sodium Fluoride (NaF) Trap Criticality Assessment

Roy Rathbun & Michael Crouse

URS Professional Solutions

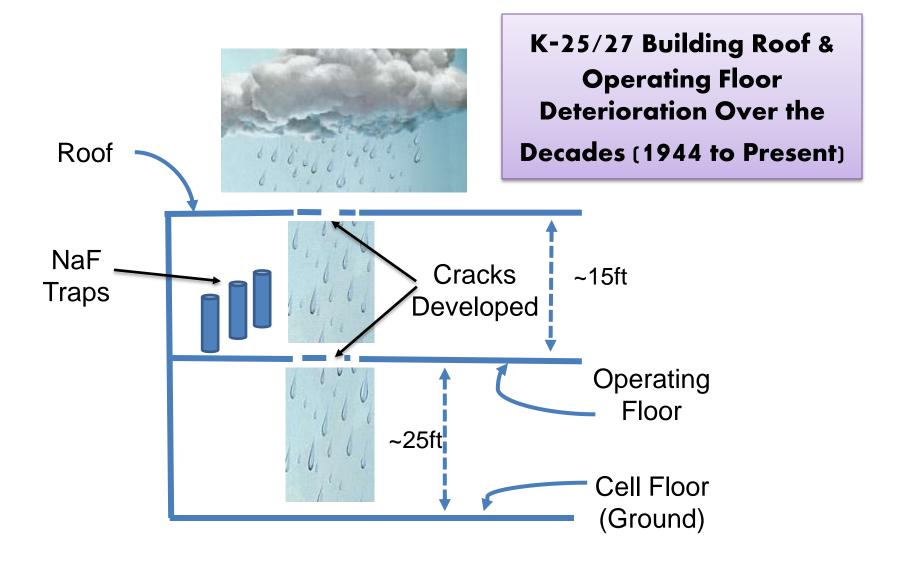
URS Professional Solutions

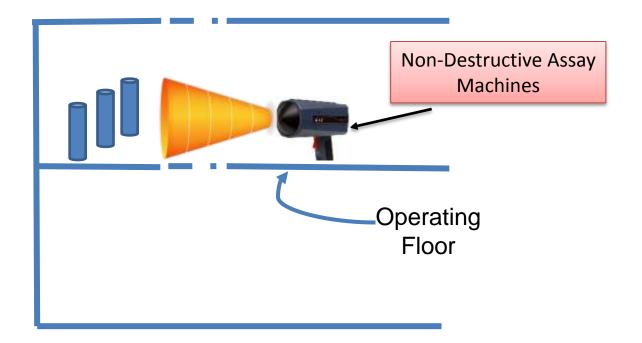
POWER INFRASTRUCTURE FEDERAL INDUSTRIAL & COMMERCIAL

ETTP Site (1989) K-25 is the U shape

NaF Trap Functions

- Serve as auxiliary equipment in the Gaseous Diffusion Uranium Enrichment process
- Capture UF₆ gas in exhaust stream by chemi-sorbtion on NaF Pellets
- > Purge light gases (e.g., O_2 , Freon) in exhaust stream
- Provide for UF₆ product recovery


Pack of 3 NaF Traps on Sled

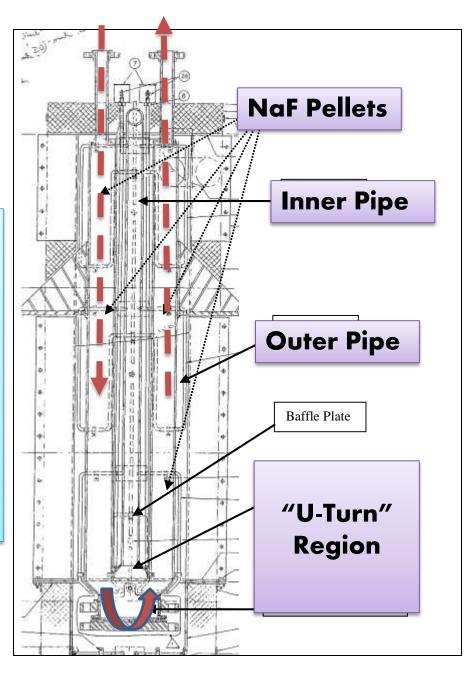


POWER INFRASTRUCTURE FEDERAL INDUSTRIAL & COMMERCIAL

- NDA measurement is standard method for determining
 U²³⁵ in equipment
- Due to floor deterioration, close positioning of NDA machines to get high confidence U²³⁵ mass measurements was not always possible
- Some U²³⁵ measurements were many times the minimum subcritical mass

<u>Criticality Safety Challenges Due to Inability to</u> <u>Closely Measure or Inspect High Mass Traps</u>

- > Were high U²³⁵ mass values real?
- > Was UF₆ reclaimed prior to shutdown?
- > Were NaF pellets removed prior to shutdown?
- > Had water accumulated in traps?
- > What is internal structure of traps?
- > Is there any available NaF trap process data ?



NaF Trap Drawing

Gas entered one top pipe and exited the other top pipe

Annulus is split by metal plate

Annulus width: 12.00 -5.56 = 6.44"

In lieu of reliable NDA U-235 measurements, these other data sources were used to estimate the mass

Operating Logs Data

- Enrichment exposed to
- NaF pellet density
- Normal trap operation

(≤ 10 wt.%)

- (65 lb/ft³)
- (172 lb NaF pellets)
- \succ Data UF₆ loading on NaF pellets data (0.8 lb UF₆ per lb NaF)

Estimate = 4.2 kg U-235 (much less than NDA result)

Alternative data factoring

Annulus volume

(100L)

(70%)

- Practical NaF density from other sources (2.6 g/cc)
- Max pellet packing fraction


Estimate = 8.8 kg U-235 (still much less than NDA result)

SCALE/KENO-V.a Model Results 0.8 lb UF₆/lb NaF 10 wt.% Enriched

Annulus Void % [water fills void]	Hyd/U Ratio	U-235 in Trap (g)	Keff + 2σ
30	8	8800	0.65
40	13	7600	0.70
50	19	6300	0.74
60	29	5200	0.75
70	45	3800	0.73
80	77	2500	0.66

 $k_{sub} = 0.93$

Loading Factor and Enrichment Sensitivity Results

k_{sub} = 0.93

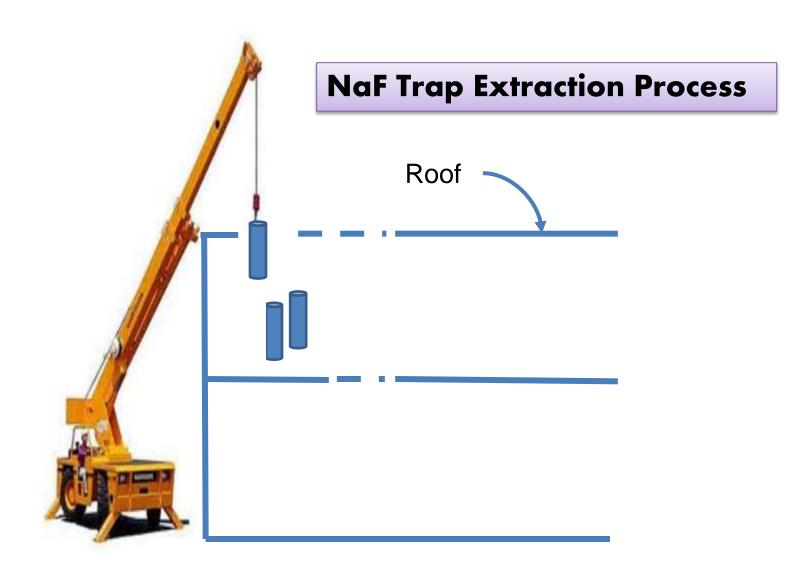
 $UO_{2}F_{2}??$

Hold on a minute!!!!!

When the assessment had reached this point, new information was forthcoming that a process upset may have sent the UO₂F₂ compound into the part of the system where the highly loaded NaF Traps were installed.

Results for UF₆, UO₂F₂, NaF, & Water in Annulus (Calculations @60% Void Annulus)

% of void that is UO ₂ F ₂	Hyd/U Ratio	U-235 in Trap (g)	Keff + 2σ
100	0	34,400	0.52
50	2.1	24,700	0.65
42	5.2	17,500	0.74
17	13	10,200	0.80
8	18	7800	0.79
0	29	5200	0.75


 $k_{sub} = 0.93$

NaF Trap Assessment Conclusions

- The keff+2σ is predicted to be only 0.75 for any amount of pellet material with the expected NaF Trap conditions of:
 - loading factor of no more than 0.8 lb UF_6 /lb NaF,
 - 10 wt.% enrichment, and
 - annular construction.
- If loading factor is actually as great as 1.1 lb UF₆/lb NaF., keff+2σ is predicted to be subcritical at 0.82.
- If U-235 enrichment is actually as great as 20 wt.%, keff+2σ is predicted to be subcritical at 0.90.
- → If process upset sent UO_2F_2 to traps and it was also captured, the predicted keff+2 σ is 0.80 for any amount of material

Removal Authorization per Critical Safety

- Results of this assessment were incorporated into NCSE-ET-K25/27-1682.
- That Criticality Safety Evaluation concluded that all NaF Traps could be safely removed one-at-a-time and stored in isolation.

