A Computational Approach to the Dissolver Paradox

Alyssa R. Kersting

2014 ANS Winter Meeting

November 12, 2014

UNCLASSIFIED

Slide 1

What is the dissolver paradox?

- First reported in 1963 by Reardon and Czerniejewski
- Three-layer arrangement:
 - Region 1 = Plutonium metal
 - Region 2 = Plutonium-water solution
 - Region 3 = Water reflector
- Looked at 3000g dissolving into 5L
- Showed that some intermediate points in dissolving process were supercritical, even when both end points were subcritical

UNCLASSIFIED

Slide 2

THEORETICAL ANALYSIS

UNCLASSIFIED

Slide 3

Previous Work and Basis

- Lutz and Webb (1993) attempted to explore the dissolver paradox mathematically
 - Based calculations on Avery (1958): "Theory of Coupled Reactors"
- Calculated Avery's coupling parameters k_{12} and k_{21} two different ways
 - Based on fission source in each cell
 - Based on single-region k_{eff} values and surface area ratios
 - Results were inconsistent between the two methods
- Did not extrapolate their calculations to a total predicted k_{eff} for the three-region system

UNCLASSIFIED

Avery's Theory of Coupled Reactors (1958)

• For any (not necessarily critical) system:

$$\begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \end{bmatrix} = k \begin{bmatrix} S_1 \\ S_2 \end{bmatrix}, \text{ where:}$$

- K₁₁ is the multiplication of 'reactor 1' (i.e. the metal) by itself
- K₂₂ is the multiplication of 'reactor 2' (i.e. the solution) by itself
- K₁₂ is the probability that a neutron born in reactor 2 will give rise to a neutron in reactor 1
- K₂₁ is the probability that a neutron born in reactor 1 will give rise to a neutron in reactor 2
- S₁ and S₂ are the fission neutron source in reactors 1 and 2
- Avery reduced this equation to:

$$(1 - k_{11})(1 - k_{22}) + (k - 1)((1 - k_{11})(1 - k_{22})) + (k - 1)^2 = k_{12}k_{21}$$

UNCLASSIFIED

Slide 5

Further Reduction of Avery's Formula

Solving the previous into a quadratic equation gives:

$$k^2 - (k_{11} + k_{22})k + (k_{11}k_{22} - k_{12}k_{21}) = 0$$

• Applying the quadratic formula gives:

$$k = \frac{(k_{11} + k_{22}) + \sqrt{(k_{11} + k_{22})^2 - 4(k_{11}k_{22} - k_{12}k_{21})}}{2}$$

UNCLASSIFIED

Slide 6

Reducing the Formulae per Lutz & Webb (1993)

- Lutz & Webb describe simple ways to calculate the parameters k_{21} and k_{12} for the particular situation in question (concentric spheres).
- All neutrons leaking from Cell 1 (metal center) enter Cell 2.

$$k_{21} \approx \left(1 - \frac{k_{eff,1}}{k_{\infty,1}}\right) k_{eff,2}$$

 The neutrons in Cell 2 will leak either back to Cell 1 or out to the reflector. Leakage to Cell 1 is derived from ratio of inner surface area to total.

$$k_{12} \approx \left(1 - \frac{k_{eff,2}}{k_{\infty,2}}\right) \left(\frac{R_i}{R_o + R_i}\right)^2 k_{eff,1}$$

These can be applied back into the quadratic version of Avery's formulas.

UNCLASSIFIED

Slide 7

Correction to Lutz & Webb's Formulas

• The equation for k_{12} contains an error. It was stated as:

$$k_{12} \approx \left(1 - \frac{k_{eff,2}}{k_{inf,2}}\right) \left(\frac{R_i}{R_o + R_i}\right)^2 k_{eff,1}$$

with $\left(\frac{R_i}{R_o+R_i}\right)^2$ representing the ratios of the surface areas at the metal-solution interface to the total surface area of Region 2 (solution).

The correctly derived ratio of surface areas is:

$$k_{12} \approx \left(1 - \frac{k_{eff,2}}{k_{inf,2}}\right) \left(\frac{{R_i}^2}{{R_o}^2 + {R_i}^2}\right) k_{eff,1}$$

UNCLASSIFIED

Slide 8

Do the formulas work?

- Applied calculated parameters from single-unit calculations and surface area ratios to quadratic equation discussed earlier
- Compared resulting values with full-system MCNP values
- Then used cosine-binned current tallies in MCNP to directly calculate interaction parameters k_{12} and k_{21} , and applied those to formulas

UNCLASSIFIED

Do the formulas work?

- MCNP-derived values for k_{12} were calculated in two different ways accounting for the reflector, and not.
- Not accounting for reflector:
 - (Total leakage from R2) = (Leaving R2 for R1) + (Leaving R2 for R3)
 - (Leakage fraction $2 \rightarrow 1$) = (Leaving R2 for R1) / (Total leakage from R2)

Accounting for reflector:

- ("Lost" to reflector) = (Leaving R2 for R3) (Leaving R3 for R2)
- (Total leakage from R2) = (Leaving R2 for R1) + ("Lost" to reflector)
- (Leakage fraction $2 \rightarrow 1$) = (Leaving R2 for R1) / (Total leakage from R2)

UNCLASSIFIED

Do the formulas work?

Do the formulas work?

UNCLASSIFIED

Slide 12

The Four Interaction Parameters

The formula for k_{eff} from the four parameters is:

$$k = \frac{(k_{11} + k_{22}) + \sqrt{(k_{11} - k_{22})^2 + 4k_{12}k_{21}}}{2}$$

- The values of k₁₁ and k₂₂ are most important in determining k_{eff}.
 - The first portion of the formula is a simple average of the two.
- K₁₂ [solution neutrons causing fissions in the metal] is very small, and becomes completely insignificant for larger volumes.
- For the same mass in different volumes, k₁₁ always has the same curve.
- The initial slope of k₂₂ (as compared to k₁₁) is the main driver for the increase.

UNCLASSIFIED

The Four Interaction Parameters

NUMERICAL ANALYSIS

UNCLASSIFIED

Slide 15

Calculational Method

• All calculations performed with MCNP5, using ENDF/B-VI cross-sections

Modelled classic 3-zone problem

- Metal
- Metal-water mixture ("solution")
- Water reflector
- Traditional approach: vary solution radius or concentration, tabulate critical mass
- 'Transferred' fissile mass from zone 1 to zone 2 to model dissolution process
 - Constant volume; Tabulated k_{eff} values

UNCLASSIFIED

Slide 16

The Overall Curves – 3000 g dissolving in various volumes

The Overall Curves – 2000 g in various volumes

The Overall Curves – 1000 g in various volumes

An Inverse Dissolver Paradox?

- The curves with a minimum point were all high-volume (200L + for 3000g) systems.
- The turning point for all occurs when the solution is around 4-6 g/L
 - This is the Limiting Critical Concentration for plutonium-water systems
- Initial decline caused by the loss of mass in the central sphere
 - Solution is too dilute to contribute much to k_{eff} highly overmoderated
- Once solution passes LCC, it can sustain its own chain reactions.
 - k_{eff} increases as it approaches optimum moderation
- A real system, particularly one that large, would not be nearly so evenly distributed as it dissolves
 - System was modeled with mass in solution homogenously mixed with all water
 - An artifact of the calculation assumptions

UNCLASSIFIED

The "Cutoff" Volume Ratio

- Maximum volume where increase is seen, for given mass
 - Increases linearly with total fissile mass of system
- Plotted system fissile mass versus ratio of mass (g) over volume (L)
- Found a "cutoff" ratio of 100
 - Consistent for Pu(5) through Pu(20)
 - Bounding of Pu(0)
- Pu systems with mass-volume ratios greater than 100 should be explicitly modelled.

UNCLASSIFIED

Slide 21

Questions?

UNCLASSIFIED

Slide 22

References

- Avery, R. (1958). "Theory of Coupled Reactors". Second United Nations International Conference on the Peaceful Uses of Atomic Energy.
- Reardon, W. A. and F. R. Czerniejewski (1963). "Idealized Plutonium Dissolvers and the 'Always Safe' Condition". Report HW-SA-2999.
- Lutz, H. F. and P. S. Webb (1993). "The Dissolver Paradox as a Coupled Fast-Thermal Reactor". LLNL Report UCRL-JC-113528.

UNCLASSIFIED

Slide 23

