A Review of Recent R&D Efforts in Sub-Critical Multiplication Measurements and Simulations

Avneet Sood¹, C.J. Solomon¹, Jesson Hutchinson², Rian M. Bahran¹

Los Alamos National Laboratory

¹ XCP-3: Monte Carlo Methods, Codes, and Applications Group

² NEN-2: Advanced Nuclear Technologies Group

Los Alamos, NM 87545

Why pay attention to sub-critical, multiplying systems, Aren't critical systems more valuable and interesting?

- Critical experiments have been used to benchmark codes, measure nuclear data, well known, easy to measure, …
- Sub-critical, multiplying systems are providing invaluable information select few have examined:
 - Standard comparison of simulated and measurements (fixed source, eigenvalue)
 - Design of future measurements, approach to critical, POI, ...
 - Validation of MCNP, nuclear data, in other regimes.
 - New methods for interpreting measured data (keff, M)
 - Quantification of uncertainties in inferred values
 - Impact on nuclear data $(v, \sigma_t, ...)$
 - Nuclear safeguards
 - Threats from unknown systems...
 - New radiation detector technologies
- NCSP funding for sub-critical measurements/simulations has benefited many programs and vice versa!

Revived a decaying capability critical to missions of DP, NP, ER, NCT

NNSS: Access to variety of SNM Possible measurements are endless!

Critical Assemblies:

- WGPu, HE, Np
- Godiva, Flat top, Comet, Planet
 Others
 - Moderators/Reflectors

Operated by Los Alamos National Security, LLC for NNSA

Key Objectives for our Measurements...

Benchmark Quality

 Material characterization, Assembly details, Experimental environment

Recent Focus on Uncertainties

- While planning, performing, and documenting the experiment
- Uncertainties are as important as the mean!
- MCNP Sensitivity/Uncertainty Accomplishments for the Nuclear Criticality Safety Program, B. C. Kiedrowski, F. B. Brown, J. S. Bull, A.C. Kahler, D. K. Parsons (LANL), M A. Gonzales, A K. Prinja (Univ of New Mexico)

Multiple Critical Configurations

- To determine reproducibility
- Various reflectors to modify neutron spectrum

Examine More than Critical Configuration

- Sub-critical and super-critical
- External neutron and gamma spectra
- Internal foils/detectors to measure reaction
 Los Alameates and reaction products

"Nickel-Reflected Plutonium Metal Sphere Subcritical Measurements," Benoit Richard, Jesson Hutchinson, Theresa Cutler, Avneet Sood, Mark Smith-Nelson *(LANL)*

Data, Analysis, and Operations for Nuclear Criticality Safety III 1415 – Wednesday, Grand Ballroom South A

The goal of our simulations is to be predictive!

MCNP – well suited for simulating sub-critical measurements

- Calculates relevant quantities for fixed-source, eigenvalue problems
 - Correct for averaged values but <u>not microscopically correct</u>. Energy is not conserved per collision

• Other MCNP-like capabilities exist: MCNP-PoliMi, MCNP-DSP

MCNP6 will replace these existing capabilities

- Key new capabilities: correlated neutron emission and list-mode data
 - "Characterization of the NPOD3 Detectors in MCNP5 and MCNP6," Kimberly Clark, Jesson Hutchinson, C. J. Solomon, Theresa Cutler, Avneet Sood (LANL)
 - Data, Analysis, and Operations for Nuclear Criticality Safety II 1145 Wednesday, Grand Ballroom South A
- NCSP has helped us revive, distribute this capability and validate our simulations
- NA-22: CGMF (LANL) / Freya(LLNL) + other multiplicity packages are currently being integrated into MCNP6
 - "Correlated Neutron and Gamma-Ray Emission in MCNP6," Michael E. Rising, Avneet Sood, Patrick Talou, Ionel Stetcu, Toshihiko Kawano (LANL)

<u>Nuclear Nonproliferation Technical Group: General—II, 1415 Wednesday Mississippi</u>

Our Recent Work...

- 1. Impact on nuclear data (v, σ_i , ...)
- 2. Quantification of uncertainties/sensitivities in inferred values (M)

Operated by Los Alamos National Security, LLC for NNSA

1st "Benchmark" Comparison: SNL - SINBAD

Operated by Los Alamos National Security, LLC for NNSA

Measurement Configurations

- Solid Sphere of Plutonium (BeRP Ball)
- Different thicknesses of polyethylene shells are placed around the BeRP ball (0-6" of radial reflection)
- Neutron measurements are made with SNAP and NPOD detectors

LANL Count Rate Comparisons

Multiplicity Distributions (1060 µs gate)

Multiplicity Distribution Moment Comparisons

Poly. Thick.	First Moment				Second Moment					
-	Calc.	Rel Err.	Meas.	Rel. Err	C/M	Calc.	Rel. Err.	Meas.	Rel. Err.	C/M
Bare	9.31	0.0020	8.95	0.0010	1.04	99.13	0.0023	91.94	0.0012	1.08
0.5"	12.74	0.0020	12.15	0.0011	1.05	182.40	0.0023	166.24	0.0013	1.10
1.0"	16.84	0.0020	15.73	0.0013	1.07	317.08	0.0023	277.38	0.0015	1.14
1.5"	20.24	0.0020	18.63	0.0014	1.09	461.07	0.0023	390.29	0.0016	1.18
3.0"	16.97	0.0020	15.37	0.0013	1.10	335.87	0.0025	274.78	0.0016	1.22

Operated by Los Alamos National Security, LLC for NNSA

Initial Conclusions

- Seem to be consistently over calculating the count rates and moments of the Feynman histograms
- Similar measurements and analysis made by E. Miller and J. Mattingly (collaborations with LANL)
- No dead time issues, source-detector uncertainty effects quantified
- Measurements were also performed using a Cf-252 source inside each reflector
- This test validated the geometry and material models of the poly reflectors and the NPOD

Slide 12

F

14

Summary from Moderated/bare ²⁵²Cf & WGPu

- Simulation of two different polyethylene reflected plutonium experiments exhibit similar systematic trends
- Two independent modifications to MCNP produce the same systematic trend
 - most modeling errors have been investigated (Mattingly et. al.)
 - ²³⁹Pu ν , σ_{f} , and possibly χ may be the source of the error
- these subcritical differential experiments are highly sensitive
 - (correlated counts on 100s–1000s μs) to input data
- subcritical experiment and critical experiment data, including but not limited to keff, should be used for data regression

Operated by Los Alamos National Security, LLC for NNSA

Investigation into the nuclear data

- Nu bar is adjusted by CSWG to make simulations match
 - In ²³⁹Pu artificially high below ~1.5 MeV to match JEZEBEL
 - Lies about 2 std. dev above covariance data
- Let's use covariance data to generate random samples of energy dependent nubar
- Input the new samples of nu bar into MCNP
- Run simulations and compare to experimental data
- Repeat until a set of nu bar that matches multiplicity distribution without significantly altering k_{eff} is found

Operated by Los Alamos National Security, LLC for NNSA

Methodology: Use covariance data to vary nu-bar

- Read in original nu bar from ACE: v(E)
- Read in covariance data from ENDF/B-VII.0
- Generate a set of correlated random numbers: R
 - Each element of **R** corresponds to an energy group *Eg*
 - Each element **R** Eg is the number of std. dev. to shift v
- Generate a new a new set of nu bar:
 - Need to map v energies to groups Eg:
 - *E* in *Eg*: $\nu' E = \sigma E \mathbf{R} Eg + \nu(E)$
- Rewrite the new data $\nu'(E)$ to a unique ACE File
- Run 6 different MCNP simulations
 - 5 different BeRP ball experiments
 - JEZEBEL fast critical experiment
- Generate multiplicity distributions and use FOM to evaluate best data set

Slide 15

Results: Does Nu-bar change impact critical experiments?

k_{eff} comparison between Trial with lowest FOM and original ENDF7 Data

	Benchmark		Original ACE Data			Lowest FOM		
Benchmark	k-eff	Rel Error	k-eff	Rel Error	# Sigma	k-eff	Rel Error	# Sigma
pu-met-fast-021-case-1	1.0000	0.0026	1.0021	0.0003		1.0001	0.0031	
pu-met-fast-003-case-103	1.0000	0.0030	0.9981	0.0003		0.9958	0.0031	**
pu-comp-inter-001	1.0000	0.0110	1.0121	0.0002	*	1.0099	0.0029	*
mix-comp-therm-002-case-pnl30	1.0024	0.0060	1.0011	0.0003		0.9983	0.0043	
mix-comp-therm-002-case-pnl31	1.0009	0.0047	1.0025	0.0003		1.0004	0.0044	*
mix-comp-therm-002-case-pnl33	1.0024	0.0021	1.0079	0.0003	**	1.0046	0.0042	*
mix-comp-therm-002-case-pnl34	1.0038	0.0025	1.0042	0.0003		1.0017	0.0029	*
mix-comp-therm-002-case-pnl35	1.0029	0.0027	1.0066	0.0003	*	1.0036	0.0033	*
	TOTAL RMS DIFFERENCE:		0.49%		0.51%			

Effects of nu-bar change on moderated WGPu

Observations from our optimized ²³⁹Pu nu-bar

Modified $\overline{\nu}$ data (top-left) suggests:

- 1. a decrease to Pu-239 $\overline{\nu}$ above ${\approx}100~\text{keV}$
- 2. an increase to Pu-239 $\overline{
 u}$ below pprox100 keV

The spectrum of neutrons causing fissions (top-right) in this system

 is highly peaked around fission energies with only 2-5% of the fissions induced by neutrons less than 100 keV

2. indicates that the modifications to $\overline{\nu}$ below ${\approx}10~{\rm keV}$ and above ${\approx}10~{\rm MeV}$ are not meaningful

- The Young et al. "raw" data was shifted upward to match the integral Jezebel k_{eff}.
- However, "raw" data is seemingly more consistent with the "best" match to the NPOD simulations

Slide 19

Quantifying Uncertainties in Sub-critical Multiplying Systems: Mass and Position Perturbations

Lower Polar Cap	Center Section	Upper Polar Cap	Upper Safety E
			(Th)
H 01 10		200	Bot
		1 9 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	Lower Safety (Th)

	(т	h)		
		TT.		
	()))	A IIIII		
	IIII	Top Cop	1	
		((Pu))))	111-	
XIIII	(III)	Center See	ction	
MHH	111	()/(Pu))	111	
<i>X</i> /////			\mathcal{M}	
	<u>III</u>	Bottom Cap	¥ .	
	1111		Ϋ́	
	777.	TITTER .		
		A State		
	_ower St	atety Block		

Configuration		Glore hole		
Number	Lower	Center	Upper	mass (g)
1	+			0
2		+		0
3		+		206.9
4			+	0
5	+	+		0
6	+	+		206.9
7	+		+	0
8		+	+	0
9		+	+	206.9
10	+	+	+	0
11	+	+	+	206.9
12	+	+	+	109.5
13	+	+	+	49.0
14				206.9

"List-Mode Simulations of the Subcritical Thor Core Benchmark Sensitivity Experiments," Rian Bahran, Jesson Hutchinson, Benoit Richard, Avneet Sood (LANL)

Data, Analysis, and Operations for Nuclear Criticality Safety I 0830-**Tuesday, Grand Ballroom South A**

The upper, center, and lower sections have net masses of 3273.9 g, 4158.2 g, and 2216.9 g respectively.

When put together, the three pieces form an approximate sphere with a total net mass of 9649.0 g. Slide 20

Experimental Setup for Sensitivity Measurements

Are these configurations distinguishable?

 Error bars are total uncertainty in the measurement (due to measured data, detector efficiency, and nuclear data)

Mass Perturbations

- Measured total multiplication for the full Thor core.
- Error bars are uncertainty due to the measured data only (detector efficiency and nuclear data not included).

Full Thor Core

- 6.2 g difference is not distinguishable (200.7 g same as 206.9 g)
- 11.8 g has a standard deviation between 1 and 3.
- 12.9 g or greater is easily distinguishable.

• Thor Core Center:

• 24.7 g is equivalent but 151.7 g clearly different.

As mass (and consequently multiplication) increases, the mass threshold decreases.

Sub-critical measurements on critical assemblies: **Caliban and Godiva**

CEA – Valduc, France 2012

Caliban

NNSS - Nevada, USA 2013

Godiva IV

- Metallic cylindrical core
 - ²³⁵U and Mo alloy
 - Diameter = 19.5 cm
 - Height = 25 cm
 - 113 kg of HEU .
- 2 blocks
 - A mobile one (below)
 - A fixed one (above)
 - 4 control rods
 - Same composition as the blocks
- **Cylindrical central** irradiation channel
- Cylindrical uranium metal fast burst assembly
- 65 kg, 93% enriched •

•

- 7-inch diameter (17.8 cm), 6-inch tall (15.2 cm) •
- Operates at delayed critical or prompt critical .
- Maximum burst is approximately 90,000 MW_{th} • with a full width half max (FWHM) pulse of 25 μS

Slide 24

Results: Sub-critical assemblies

- Joint CEA/LANL measurements performed on four critical assembly machines (this work only focused on Caliban and Godiva-IV results).
- Over 50 configurations were measured. Configurations were at various subcritical multiplications as well as at and above delayed critical.

Results were favorable:

- The largest Δk_{eff} between the measured data and the control rod worth curves was 0.008.
- The largest Δk_{eff} between the measured and simulated data was 0.009.

CEA

- Chapelle to defend thesis in May 2014.
- US
 - Apply recent subcritical uncertainty analysis to all measured data.
 - Document list-mode simulations for all configurations.
 - Analyze Planet and Flat-Top results ("best" nubar for Flat-Top?).
 - Investigate SCRAM and other measurements.

Future plans

- Historical measurements have included:
 - Point sources (bare, moderated) (SF, (a,n))
 - Spherical sources (WGPu, HEU), point sources (SF, (a,n))
 - Critical Assemblies (Caliban, Godiva)
- NCSP sponsored simulations/measurements of sub-critical systems have:
 - Helped to eliminate multiple MCNP codes versions; maintain one modern version
 - Driven us to examine both correlated neutrons and gamma emissions (simulation)
 - Re-examine fundamental nuclear data
 - Quantify and document our uncertainty methodology
 - Examine sensitivity/uncertainty in our measurements to determine M

What's next?

- University research reactors?
- Refine our analysis capabilities for unknown, sub-critical, multiplying systems

Lots of data has been accumulated

Analysis of this data is needed

• Los Alamos National Laboratory

Extra

Operated by Los Alamos National Security, LLC for NNSA

Review: Relevant Physics for Sub-Critical Multiplication

• (Source) Passive neutrons from fissionable material emitted from:

- Spontaneous fission neutron sources:
 - <u>Correlated in time and location of fission</u>
 - Examples: Cf-252, Pu-240
- (α ,n) reactions:
 - Produced when α particle is absorbed and neutron is emitted
 - <u>Not correlated in time and location</u>
 - Examples: Am-Be

Induced) Neutron multiplication dominated by two physical processes:

- (n,2n)
 - Occurs mostly above 7 MeV
 - Does not contribute significantly to most scenarios
- Neutron-induced Fission

Simulations need to be "microscopically" correct for comparisons with measured data.

Slide 28

Sub-critical Measurements

- Neutron multiplication measurements (passive and active) designed to separate the correlated emission events, e.g., SF, from the uncorrelated events, e.g., (α,n),
 - Record time of neutron capture in a neutron detector over a large collection time (e.g. 300 sec)
 - Group these capture times in a large number (e.g. 1 M) smaller time sub-intervals (e.g. 250 μsec)
 - These time sub-intervals are larger than typical neutron detection and lifetimes (~50 μsec)
 - Multiplicity histogram is constructed
 - Obeys Poisson statistics if system is non-multiplying (i.e. neutrons are emitted randomly in time)
 - Data analysis begins...Feynman Variance-to-Mean, CSDNA, etc

Data recorded is neutron detector location and time: list-mode data

Simulations need to produce list-mode data for comparisons

Slide 29

MCNP Simulations of Sub-Critical Measurement

MCNP simulation of neutron sources and detection

- User can define location, direction, energy, time, and intensity of SF, (α,n) neutron sources
- User <u>cannot</u> define fission events
 - e.g. sample number of neutrons emitted from ν_{bar}
- User <u>cannot</u> define correlated (time, location) neutron sources
 - MCNP samples these values from user's input
- User <u>cannot</u> (easily) record location and time of detection.
 - Possible using MCNP's PTRAC capability and a user-created external script to extract this information

Standard MCNP is not microscopically correct enough to compare with current sub-critical measurements:

Operated by Los Alamos National Security, LLC for NNSA

MCNP Modifications

SOURCE/TALLYX subroutines written

- Subroutines intended for user-defined source and tally
- Independent of MCNP no modification of MCNP is required
- Works with MCNP5.1.60 (current release)
- SOURCE—modifies definition of starting particle to be a starting reaction, e.g., spontaneous fission, samples starting particles from that reaction
- TALLYX—modifies a type 4 tally to produce a file of absorption times in tally cell, a.k.a. list-mode data
- Tally output can be processed to analyze inferred multiplication

Adaptation into MCNP6 with documentation, validation benchmarks, etc in progress

Slide 31

Sub-critical Data Analysis: Feynman Histogram Randomly fissioning source follows Poisson Distribution

Feynman distributions are constructed and the deviation of the distribution from a Poisson gives us information about the multiplication of the system.

Slide 32

Sub-critical Data Analysis: Feynman Variance-to-Mean Multiplying source Deviates from Poisson Distribution

 As the multiplication of a system increases, the deviation from a Poisson distribution will increase.

