Validation of *k*_{eff} Calculations for Boiling-Water Reactor Fuel at Peak Reactivity in Transportation and Storage Casks

W.J. Marshall and S.M. Bowman

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Outline

- 1. Introduction
- 2. Methodology
- 3. Sources of sensitivity data
- 4. Potentially applicable experiments
- 5. Bias and bias uncertainty
- 6. Gap analysis
- 7. Conclusions

Introduction

- ORNL and NRC have initiated a project to investigate burnup credit for BWR fuel
 - Phase I: Peak reactivity methods applied in casks
 - Phase II: Extended burnup credit
- Phase I contains tasks for evaluating depletion parameters, criticality code validation, and composition validation
 - Depletion parameters presented earlier in this session
 - Criticality code validation presented in this presentation
- All Phase I work expected to be published in a future NUREG/CR document by the NRC

Methodology

- Overall methodology based on that used in NUREG/CR-7109 for validation of PWR BUC
- TSUNAMI-IP used to determine similarity (c_k) between application models and potentially applicable critical experiments
- c_k calculated by dividing covariance by product of application uncertainty and experiment uncertainty

- Experiments with a c_k of 0.8 or more are judged to be acceptably similar for validation
- Non-trending, traditional trending, and c_k trending performed with applicable cases to determine bias and uncertainty

Sources of Sensitivity Data

- LEU and MIX systems from International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE)
- Sensitivity data files (SDFs) generated by SCALE/KENO from:
 - VALID library maintained at ORNL
 - 123 LEU-COMP-THERM and 49 MIX-COMP-THERM
 - OECD/NEA generated, distributed on 2013 IHECSBE
 - 1000+ LEU and 225 MIX systems (solutions, mostly pin arrays)
 - Cases used in NUREG/CR-7109
 - Almost 200 cases, including all 156 HTC experiments
- Total of 1643 unique critical experiments considered

Potentially Applicable Experiments

- 3 application models considered, all GBC-68 with GE14 fuel
 - Vanished lattice, actinide-only fuel compositions
 - Vanished lattice, actinide and fission product fuel compositions
 - Full lattice, actinide and fission product fuel compositions
- All models at ~7.5 GWd/MTU (AFP peak reactivity)
- Table showing cases with $c_k \ge 0.8$ presented in paper
 - 71 experiments for VAN AO lattice
 - 62 experiments for VAN AFP lattice
 - 51 experiments for FULL AFP lattice

Potentially Applicable Experiments

- All high similarity experiments are B&W critical experiments
- IHECSBE evaluations LCT-008, LCT-011, and LCT-051
- Highest 44 c_k cases for VAN lattices from these experiments
- Potential impact of experimental correlations on validation not investigated in this work

Potentially Applicable Experiments

ck results by experiment class, GBC-68 VAN lattice, AFP

Bias and Bias Uncertainty

- Bias and bias uncertainty determined for vanished lattice with AFP isotope set
 - Vanished lattice is limiting compared to full
 - AFP allows for an assessment of Gd and fission products
- Considered 62 acceptably similar cases with 3 techniques

Validation Technique	Bias	Bias Uncertainty	Combined Total
Non-trending	-0.00354	0.00526	-0.00880
Enrichment trending (3.51 w/o ²³⁵ U)	-0.00136	0.00604	-0.00740
c _k trending (c _k = 1.0)	-0.00275	0.00695	-0.00970

Bias and Bias Uncertainty

Enrichment trend

Bias and Bias Uncertainty

c_k trend

11 Managed by UT-Battelle for the U.S. Department of Energy

Validation of $k_{\rm eff}$ Calculations for Peak Reactivity BWR Fuel in Casks

Gap Analysis

- Identified potential experiments are all LCT cases
- BWR fuel at peak reactivity also contains plutonium, residual gadolinium, and fission products
- These are unvalidated in the proposed suite
- Sensitivity/uncertainty analysis can be used to determine penalty factors, using methods similar to those used in NUREG/CR-7109 for fission products and minor actinides
 - Propagate cross section uncertainty and sensitivity coefficients to determine potential reactivity effect of cross section uncertainties
 - Fundamental theorem of TSUNAMI: Biases are a result of nuclear data errors, and the errors are bounded by the uncertainties.

Gap Analysis – Sensitivities

 $k_{\rm eff}$ sensitivities for ²³⁹Pu, ¹⁵⁵Gd and ¹⁴⁹Sm

Gap Analysis – Uncertainties

Cross section uncertainties for ²³⁹Pu, ¹⁵⁵Gd and ¹⁴⁹Sm

14 Managed by UT-Battelle for the U.S. Department of Energy

Gap Analysis – Penalty Factors

- TSUNAMI-IP calculates 1-sigma uncertainty in k_{eff} caused by uncertainty in each reaction cross section
- RSS multiple reactions together to determine total uncertainty associated with each nuclide
- Doubled resulting uncertainty to determine 2-sigma penalty

Nuclide Group	Validation Gap Penalty (% Δk_{eff})
Pu and Am	0.3
Gd	0.05
Major Fission Products and Minor Actinides	0.06

Gap Analysis – Penalty Factors

- Peak reactivity for 3 models considered was 7.5 GWd/MTU
 - GBC-68 models discussed earlier
- Peak reactivity for other model was 11 GWd/MTU
 - BWR application model in NUREG/CR-7109
- Reported factors bound both models
 - Pu and fission products increase with burnup
 - Residual Gd drops with burnup, but also sensitive to loading
- Large Pu sensitivity more important in determining penalty than larger uncertainties in fission product cross sections

Conclusions

- Validation of k_{eff} calculations involving BWR fuel at peak reactivity is possible using experiments from the IHECSBE
- Experiments with acceptable similarity identified so far are all LCT systems, lacking Pu, Gd, and fission products
- S/U methods can be used to determine a penalty to account for unvalidated isotopes
 - Penalties are not prohibitively large
 - Fission product penalty is smaller than 1.5% of worth proposed in NUREG/CR-7109

