IER-161, BeRP Ball Reflected by Nickel Benchmark Evaluation

Benoît Richard, Jesson Hutchinson, Theresa Cutler, Avneet Sood, Mark Smith-Nelson

XCP-3, NEN-2

November the 12th, 2014

benoit_richard@lanl.gov

LA-UR-14-28648

UNCLASSIFIED

Techniques

Table of Contents

Introduction

Presentation

Experimental Techniques

- Biases & Uncertainties
- **6** Comparison Experiment-Simulation

6 Conclusion

UNCLASSIFIED

Subcritical Neutron Noise Measurements

An appropriate tool to improve criticality safety assessments ...

- Subcritical neutron noise measurement techniques can infer the multiplication and the reactivity of a nuclear assembly
- Easy way to provide a continuous monitoring during operations
- Validation of the computational schemes used in criticality safety assessment
 - Nuclear data
 - Codes and Methods

... Need for new subcritical benchmarks in the ICSBEP Database

UNCLASSIFIED

Provide a benchmark evaluation based on a set of subcritical experiments involving the Berp ball reflected by nickel shells

- Reactivity range: from $k_{\text{eff}} = 0.79$ to $k_{\text{eff}} = 0.92$
- 7 configurations: from the bare Berp to the 3" reflected case
- Experiments performed in September 2012 at NCERC

Efforts are provided to improve the restitution of MCNP microscopically -> Need for benchmarked experiments to support this work

- Necessity to go beyond k_{eff}
- Benchmark released in the ICSBEP handbook (September 2014) under the reference: FUND-NCERC-PU-HE3-MULT-001

MCNP5/MCNP6 inputs available and ready to use

The Berp Ball: Overview

- α-phase plutonium sphere (93.7 wt.% of Pu 239)
- 4.5 kg, 3.0" diameter
- Encapsulated in a SS 304 cladding
- Machined in 1980

- Previous experiments:
 - Be reflected critical experiment (PU-MET-FAST-038)
 - HEU reflected "Rocky Flats Shells" critical experiment (MIX-MET-FAST-013)
 - CSDNA subcritical noise measurements with polyethylene reflection (SUB-PU-MET-FAST-001) and nickel reflection

UNCLASSIFIED

Nickel Shells

- 6 layers, each being 0.5" thick → maximum thickness: 3.0"
- Each layer is composed of 2 combined shells

UNCLASSIFIED

Experimental configuration and instrumentation

- Two NPODs, aka multiplicity counters, 15 He3 tubes inside a polyethylene body which provide list-mode data
- Construction of the Feynman histograms to deduce the asymptotic counting rates R₁, R₂, (R₃...)
 - R₁: singles asymptotic counting rate (related to ν
)
 - R_2 : doubles asymptotic counting rate (related to $\overline{\nu(\nu 1)}$)
- 1 SNAP, aka gross neutron counter
- 1 HPGE, gamma detector

UNCLASSIFIED

Benchmarked Quantities

- Must be deduced from well-known and fieldproven techniques
- Fundamental quantities having nevertheless a practical meaning
- Accessible and reliable uncertainty determination
- Must enable the discrimination without any ambiguity of each studied configuration

Selected quantities

- Directly deduced from the Feynman histogram:
 - R₁: singles asymptotic counting rate
 - R₂: doubles asymptotic counting rate
- M: neutron multiplication

UNCLASSIFIED

The Neutron Multiplication

- Many kinds of neutron multiplications: total M_t and leakage M_1 multiplications are mostly used
- Problem: both are difficult to benchmark
 - Effects coming from the variations of the spatial distribution of the importance function
 - Presence of a (α, n) neutron source

Use of the Hage-Cifarelli technique to get an approximated leakage multiplication M_1

- Neglecting the (α, n) source strength in front of the spontaneaous fissions source
- 3 equations $R_i = f(M_1, \epsilon, F_s, p(\nu))$
- Solve for M_1 , ϵ and F_s

Codes and Methods

Steps	Experiment	Biases & Uncertainties	Simulation	
Source setting	Berp Ball	Nuclear data & Sources4C	Sp. fission & (α, n) source strength SOURCEX routine / FMULT card	
Transport	Nature	Model, MCNP & Nuclear data	Monte Carlo transport in MCNP	
List mode data acquisition	2 NPODs	NPOD Model	TALLYX routine / PTRAC \rightarrow detection events in He3 tubes	
Solving Hage Cifarelli equations	$\begin{array}{c} \varepsilon \text{ deduced from} \\ \text{calibration experiments} \\ \rightarrow \left(\mathcal{M}_{l}, F_{s} \right) \end{array}$	Methodological bias (calibration)	$\begin{array}{c} F_{s} \text{ known} \\ \text{(input parameter)} \\ \rightarrow (\mathcal{M}_{l}, \varepsilon) \end{array}$	

UNCLASSIFIED

Sensitivity/Uncertainty Study - Experimental Data

11/17

Illustration on the 3.0" thick reflected case

44 independent uncertainties on experimental data divided in 4 broad categories

	R ₁	R ₂	Ml
Combined uncertainties	2.19 %	3.49 %	0.76 %

Models for the Berp Ball Assembly

Detailed model

s Alamos

- As close as possible to engineering specifications
- Impurities are modeled
- Expensive simulations (3.0-in / 2 hours / 128 proc. / MCNP5-Moonlight)

Simplified model

- Simplified geometry
 - BERP ball
 - Detectors
- No impurities
- Concrete walls removed
- Large improvements in computational time (3.0-in / 15 min. / 128 proc. / MCNP5-Moonlight)

Global/individual simplification biases have been estimated and are included in the evaluation

UNCLASSIFIED

Comparison Experiment-Simulation on R₁

Comparison Experiment-Simulation on R₂

Comparison Experiment-Simulation on \mathcal{M}_{l}

Conclusion & Future Work

- Criteria are met to make this benchmark acceptable, for the three benchmarked quantities
- Results can still be improved:
 - Methodological biases induced by calibration experiments
- Preliminary results for the W benchmark are encouraging: submission next year
- Good starting point to go beyond: inference model benchmark
- Study of the response given by the Gamma detector (gamma coincidences)

UNCLASSIFIED

Acknowledgments

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the NNSA for the US DOE

UNCLASSIFIED

