

New Critical Experiment Design to Investigate Composite Reflection Effect

Catherine Percher, Soon Kim, David Heinrichs

2014 ANS Winter Meeting, Anaheim, CA

Lawrence Livermore National Laboratory, P.O. Box 808, L-198, Livermore, CA 94551-0808

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

What is Composite Reflection?

- A combination of two reflectors that acts in concert to produce more reactive nuclear systems than either single reflector separately
- LLNL's Nuclear Criticality Safety Division calculated surprisingly reactive configurations when a thin, moderating reflector was backed by a thick metal reflector
 - More reactive than either single reflector materials separately
 - Resulted in a stricter-than- anticipated criticality control set, impacting programmatic work

Previous Work

- Anomalies of Nuclear Criticality, Section K, "Complex Reflectors"
 - Brief Description of two cases of composite reflectors
 - Paxton experiment:

1.27 cm Ni backed by 20 cm of depleted U (DU) yielded a smaller critical mass than either infinite reflector separately

• PNNL Experiment:

Arrays of low-enriched UO₂ rods with 2 cm of water reflection backed by 7.6 cm of DU, more effective than either thick water or DU

E. D. Clayton

ANOMALIES OF NUCLEAR CRITICALITY

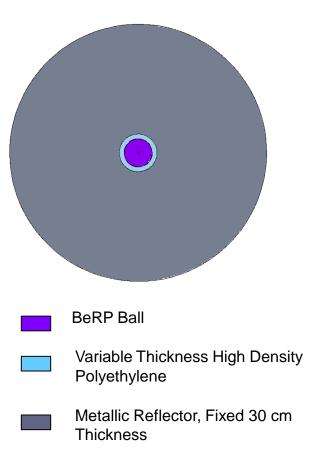
Previous Work

- RFNC-VNIITF Paper from ICNC 1995
 - Calculations and experimental investigations of combinations of Be and CH₂ reflectors
 - Combinations of CH₂ and Be reflectors were found to be more effective than either material as a single reflector of the same thickness
 - CH₂ layer as an inner reflector had an optimal thickness of 1-1.5 cm, resulting in Δk/k ≈ 0.7%
 - Be-CH₂ assemblies with total reflector thicknesses between 8 and 20 cm also showed effect, max Δk/k ≈ 1.5%

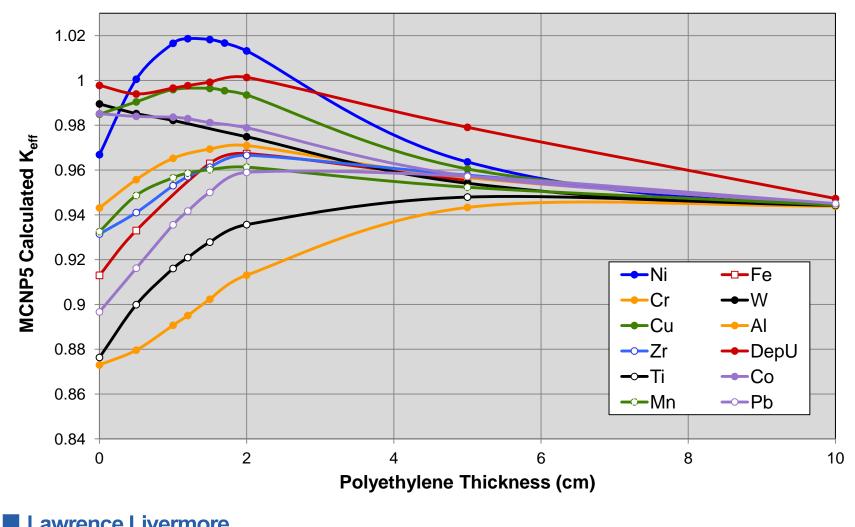
MKP, T=2 cm 52 51 50 U Cylinder Critical Mass (kg) T=4 cm T=8 cm 37 36 35 T=15 cm 34 33 \$ tog õ 05 10 15 20 30 25 CM Thickness of CH₂ Layer (cm)

Figure: Experimental Results of Critical Masses of Solid ²³⁵U Cylinders (20-cm diameter) as a function of CH₂ Layer Thickness for Different Total Reflector Thicknesses (T)

Current Work


- Based on prior experimental evidence, the composite reflector effect is believed to be real and experimentally viable
- Aim of current study to design an experiment using an existing plutonium sphere and common reflector materials in combination that will drive it critical
- Study could alert criticality practitioners to the potential hazard of composite reflection with common reflector materials

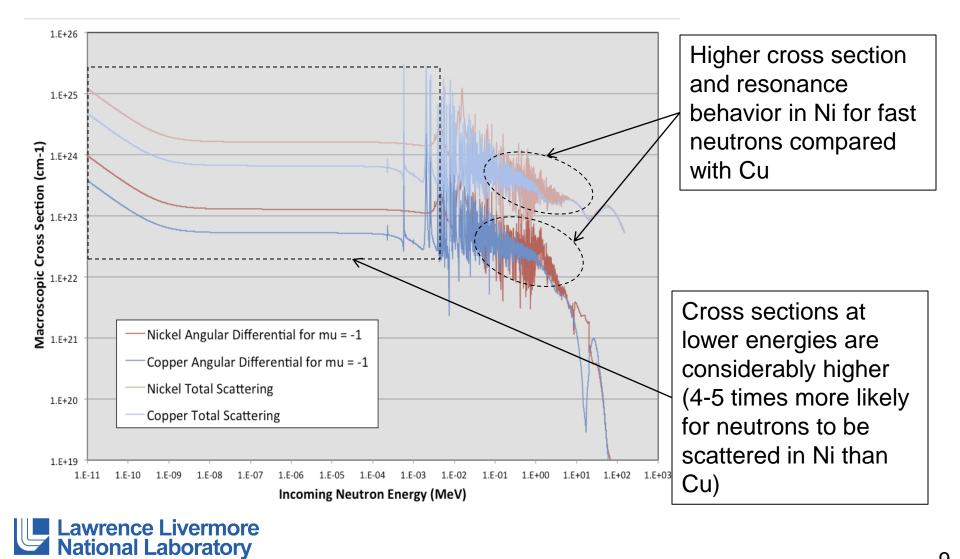
Feasibility Studies with the Pu BeRP Ball


- MCNP5 calculations with ENDF/B-VII.1 cross sections
- Beryllium Reflected Plutonium (BeRP) Ball
 - 4.484 kg Pu (~6% ²⁴⁰Pu)
- Composite Reflectors with Polyethylene
 - Varying thicknesses of CH₂ in direct contact with the BeRP Ball
 - Additional fixed 30 cm of 12 different reflector materials outside the CH2 layer
 - Ni, Fe, Cr, Ti, Mn, Zr, W, Al, Pb, Co, Cu, U (depleted)

Results for Composite Reflection Calculations

Lawrence Livermore National Laboratory

Initial Results Overview


- Tungsten and Cobalt did not show a composite reflection effect with CH₂- higher k_{eff} with no CH₂
- All other studied reflectors showed some degree of composite reflection effect with CH₂
- DU and 2 cm CH2 predicted to be a just critical configuration
- Nickel and CH₂ were shown to have the largest effect, peaking at 1.2 cm CH₂ (k_{eff} = 1.0186(2))

 Increase of 3.5% over purely Ni-reflected case and 9.3% over purely CH₂-reflected case

Why is Nickel so effective ?

Reducing Ni Reflector Thickness

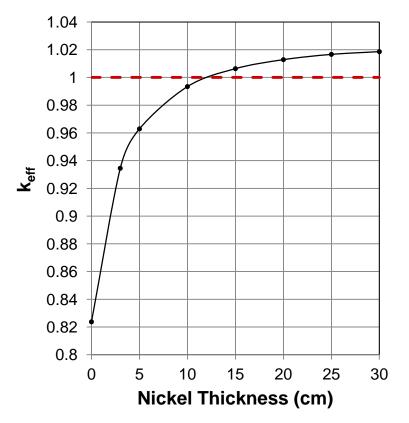
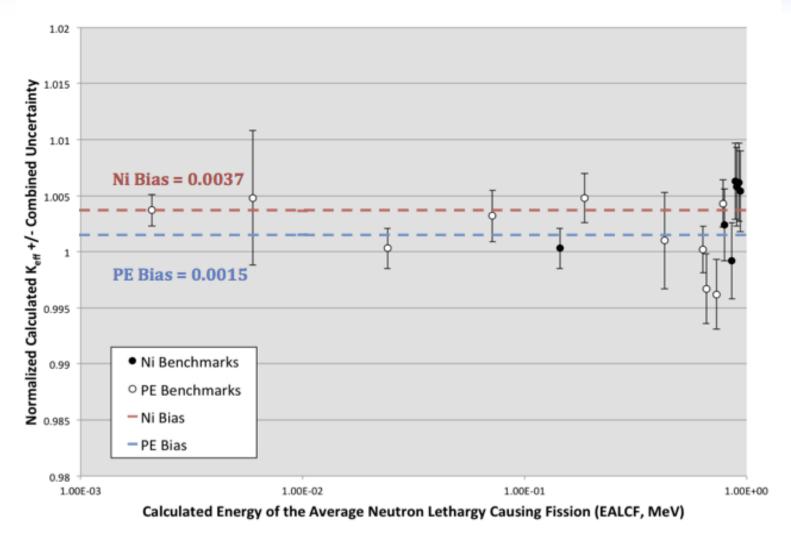


Figure: K_{eff} of the BeRP Ball as a Function of Varying Thicknesses of Nickel Outer Reflection with a Fixed 1.2 cm Inner Polyethylene Reflector

- Previous calculations used a fixed 30 cm Ni reflector
- Ni reflector thickness was varied to see the expected critical configuration
- 1.2 cm of CH2 backed by 12 cm of Ni is the predicted critical configuration
- 20 cm Ni reflector gives excess reactivity greater than 1% (keff = 1.0128(2))


Estimation of Calculational Bias

- Calculational bias was investigated to determine if the MCNP5 calculations were believable
- The International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook was consulted for fast benchmark experiments with nickel or polyethylene reflection
 - Seven Ni-reflected experiments
 - 11 CH2-reflected experiments
- These 18 cases were run in MCNP5 using ENDF/B-VII.1 data libraries

Bias Calculation Results

Conclusions

- Polyethylene backed by nickel around the BeRP Ball was found to be the most reactive of all composite reflectors studied
- The optimal polyethylene thickness was found to be 1.2 cm and the corresponding critical nickel thickness is 12 cm. With 20 cm of Ni reflector, keff was calculated to be 1.0128
- Available ICSBEP evaluations point to a small positive bias for both Ni and CH2 when used as a reflector (0.0052 combined)
- Even taking this bias into account, it is appears that a critical system can be designed using the BeRP ball with a composite CH₂-Ni reflector
- Final design of a critical experiment is currently underway as a joint LLNL/LANL project

