

Assessment of the Need for a Criticality Accident Alarm System

Jim Baker
KAC Nuclear & Criticality Safety Engineering

Savannah River Nuclear Solutions, LLC November 2014

Presentation Outline

- Why does a facility install a CAAS?
- What criteria determine if a CAAS is needed?
- How to approach assessing the need
- A real-world example
- Conclusions
- Questions/Comments

Where Do We Need a CAAS System? And Why?

ANSI/ANS-8.3:

- Purpose: Reduce risk to personnel
- Installation implies non-trivial risk of an accident
 - VERY non-trivial costs
- Need shall be evaluated
 - For significant quantities of fissile material
 - Overall risk judgment
- But how do we judge the risk?
 - LA-13638, A Review of Criticality Accidents, 2000 Revision

Common Attributes of Process Accidents

- Communications, procedures
- Accountability & accumulation
- Vessel geometry, volume
- Operator knowledge
- New, restarted or one-of-a-kind operations
- Equipment malfunction
- Unanticipated movement of material

Observations from Accident History

- 21 of 22 process accidents occurred with solution (moderated) systems
- No accidents occurred in storage or transportation
- Local consequences only
- Avoid unfavorable geometry for high-concentration solution

Observations (cont'd)

- No accidents occurred due to equipment failure, or faulty NCS calculations
- Many occurred during non-routine operations
- Downtime was related to administrative considerations, not severity
- No new physical phenomena observed

Primary Lessons Learned

- Never a single cause
- "Human element" always present
- Risk factors :
 - Unfavorable geometry
 - Lack of written procedures, communications
 - Production pressures
 - Operations unfamiliarity w/ process
 - NCS not integrated with accountability

Primary Lessons Learned (cont'd)

- Risk factors (cont'd)
 - Operations training:
 - Awareness of criticality hazard
 - Recognition & response to abnormal conditions
 - Stop work, alarm response & evacuation
 - Supervisory responsibility
 - Are hardware failures apparent to workers?
 - Does equipment & configuration promote ease of operations?

Primary Lessons Learned (cont'd)

- Risk factors (cont'd)
 - Senior management support
 - Regulatory support and involvement
 - Sharing information

Assessment of a Specific Facility

To judge aggregate risk consider:

- Scope, or number of, operations
- Inherent complexity
- Are there changing forms? Holdup?
- Unfavorable geometry
- Processes subject to change?
- Conduct of operations
- Oversight

Aggregate Risk of a Criticality Accident is:

- Not a simple summary of NCS Evaluations
- Informed by evaluations and risk factors
 - Factors often inter-related
- Not quantitative
- Ultimately based on expert judgment

K Area Complex (Former Reactor Facility)

K Area Primary Mission: Storage of SNM

Secondary Missions: Surveillance, Testing and

Recertification

PCV/SCV Leak Test Unit

Prompt Gamma

Digital Radiography

Calorimeter (MC&A)

Destructive Evaluation Glovebox

Glovebox Cutaway Diagram

Example: Assessing Need for CAAS at K Area

- Scope of operations: Storage & surveillance
- No fissile solutions; no chemical processing
- Stable material inside shipping containers
 - Rigorous accountability
 - Few opportunities for upsets
- Aggregate risk dominated by KIS activities
 - One item in KIS at a time
- Formality of operations
- Safety culture

Conclusions for K Area Operations

For K Area:

- Extremely low aggregate risk of criticality accident
- CAAS installation adds:
 - Non-zero risk of injuries
 - Significant costs
- On balance, no CAAS is recommended

Application:

What about the facilities that you support?

Questions / Comments?

