

Generation of Thermal Scattering Laws for YH₂ using Ab Initio Methods

Michael L. Zerkle Bettis Atomic Power Laboratory

American Nuclear Society Winter Meeting November 9-13, 2014

Nov. 9-13, 2014

American Nuclear Society Winter Meeting

Outline

- Motivation
- Yttrium Hydrogen Phase Diagram
- YH₂ Crystal Structure
- Ab Initio Approach using MedeA
 - Structure Optimization
 - Lattice Dynamics
- YH₂ Thermal Scattering Laws
 - Phonon Frequency Distributions
 - Inelastic Scattering Cross Section
 - Incoherent Elastic Scattering Cross Section
- Conclusions

Motivation

- Metal hydrides (ZrH_x) used as high temperature moderator/reflector in nuclear reactors
 - TRIGA
 - SNAP-10
 - TOPAZ
- Yttrium hydride (YH_x) has superior hydrogen density (N_H) at elevated temperatures
- Test improvements to MedeA software, use *ab initio* approach to generate TSLs for new moderator materials

Hydrogen in metallic Zr, Ce, Y and Ca in equilibrium with 1 atm H_2 at various temperatures. (Source: *Metal Hydrides*, Academic Press, p. 442, 1968)

 N_{H} is number of hydrogen atoms/cc x 10⁻²²

Yttrium – Hydrogen Phase Diagram

- H has limited solubility in α-Y at low temperatures.
- H/Y < 2.0 is region of practical interest for nuclear applications
 - Mixture of α-Y + YH₂ phases at lower temperatures (see next slide)
 - YH_{2-x} at elevated temperatures
- YH₂ phonon frequency distribution needed to develop thermal scattering law (TSL) for YH_{2-x}

FIG. 10.2 Partial phase diagram of the yttrium-hydrogen system.

(Source: *Metal Hydrides*, Academic Press, p. 443, 1968)

Microstructure of Yttrium Hydride

Y-1.29% H alloy (H/Y = 1.15). Structure consists of 50% α -yttrium solid solution (dark regions) and 50% hydride phase (light regions)

Y-2.17% H alloy (H/Y = 1.96). The structure is nearly all hydride phase.

(Source: Metal Hydrides, Academic Press, pp. 447-448, 1968)

Nov. 9-13, 2014

American Nuclear Society Winter Meeting

YH₂ Crystal Structure

- YH₂ has a CaF₂ type FCC structure
 - 12 atoms
 - 4 Y atoms (blue) at vertices and faces of cubic unit cell
 - 8 H atoms (grey) located in tetragonal holes between Y atoms
- Lattice constant a = 5.2032 Å
- MedeA calculated value compares well with average experimental value of a = 5.204 Å from X-ray diffraction measurements.

Ab Initio Approach Using MedeA

- MedeA software used to perform the *ab initio* calculations
- Informatica tool used to select the initial unit cell structure from the ICSD (crystal structure) database
- Automated Covergence tool used to optimize unit cell structure
 - Converge k-mesh
 - Converge planewave cutoff energy
 - Converge supercell size
 - Iterative VASP *ab initio* calculations
- PHONON tool performs the lattice dynamics calculations on optimized structure
 - Dispersion relations
 - Phonon density of states
 - Thermodynamic properties
- NJOY/LEAPR used to generate TSL from phonon frequency distribution

Nov. 9-13, 2014

American Nuclear Society Winter Meeting

Optimization of the YH₂ Structure

- VASP calculations
 - Detailed quantum mechanical first principle simulation of crystal lattice using density functional theory
 - Generalized Gradient Approximation (GGA)
 - Projector Augmented Wave (PAW) pseudopotential
- Optimized structure to a total energy threshold of 0.1 meV
 - Required 42 VASP calculations
 - 537.5 eV planewave cutoff energy
 - k-spacing of ~0.05 1/Å
 - 42×42×42 final supercell size
 - Optimized lattice constant a = 5.20319995 Å
- Optimized lattice structure then used in PHONON calculations

	o Job Columns	Final	Phas	e						
Step	Parameter	Convergence	Plane Wave Cutoff (eV)	K Specing (1/Ang)	Actual Mesh	Computation time	Total energy (eV)	Deta E (eV)	rotai energy/atom	Delta E/stom (eV)
	17.0	PWC only	462.5	0.697	444	4.094 s	-15.3115	0.0011	-5.10383	0.00036
	017	K-mesh only	250	0.0686386	31 31 31	1 m 9.562 s	-15.2735	0.0011	-5.09117	0.0000
	18.0	PWIC only	475	0.697	444	3.938 s	-15.3118	0.0003	-5.10393	0.0001
	19.0	PWC only	487.5	0.697	444	3.875 s	-15.3125	0.0007	-5.10417	0.00024
	20.0	PWC only	500	0.697	444	3.859 s	-15.3125	0	-5.10417	0
	1916	Final	487.5	0.0762651	28 28 28	1 m 43.969 s	-15.3372		-5.1124	
	20 17	Final	500	0.0686386	31 31 31	2 m 18.484 s	-15.3376	0.0004	-5.11253	0.00013
	21 18	Final	512.5	0.0617747	34 34 34	3 m 2.516 s	-15.3379	0.0003	-5.11263	0.0001
	22 19	Final	525	0.0555972	38 38 38	5 m 46.328 s	-15.3382	0.0003	-5.11273	0.0001
42	23 20	Final	537.5	0.0500375	42 42 42	7 m 46.422 s	-15.3383	0.0001	-5.11277	4e-005
ta to displa 5 26 - 5 28 - 15 3 - 5 32 -	y Totel en		8	Vave Cutoff	-15.26 -15.28 -15.3 -15.32	1 / K Spaci	ng			

YH₂ Dispersion Relations

- PHONON calculation use
 - 2×2×2 supercell (96 atoms)
 - Planewave cutoff energy of 250 eV
 - k-spacing of $0.5/\text{\AA}$ (5×5×5 k-mesh)
 - ± 0.02 Å displacement
- Dispersion relations (at right)
 - Well separated acoustical and optical modes (as expected)
 - Lower branches are acoustical modes mainly due to heavy Y atom vibrations
 - Higher branches are optical modes mainly due to light H atom vibrations

American Nuclear Society Winter Meeting

Nov. 9-13, 2014

American Nuclear Society Winter Meeting

Nov. 9-13, 2014

American Nuclear Society Winter Meeting

Nov. 9-13, 2014

American Nuclear Society Winter Meeting

Thermodynamic Properties Agree with Measurements

Nov. 9-13, 2014

Thermodynamic Properties Agree with Measurements

Nov. 9-13, 2014

Thermodynamic Properties Agree with Measurements

Nov. 9-13, 2014

LEAPR Models for YH₂ TSLs

- H-YH₂ and Y-YH₂ TSL generated using LEAPR
- Phonon frequency distributions from PHONON calculation
- Incoherent approximation
- Atomic mass ratios and free atom scattering cross sections from ENDF/B-VII.1 ¹H and ⁸⁹Y evaluations
- α and β mesh borrowed from ENDF/B-VII.0 ZrH TSLs
- 10 temperatures (293.6, 400, 500, 600, 800, 1000, 1200, 1400, 1600 K)

Conclusions

- *ab initio* tools like MedeA have sufficiently matured and can be used to generate TSLs for new moderator materials
- H-YH₂ and Y-YH₂ TSLs produced using the *ab initio* approach
- Results consistent with available measurements
- Need to review α and β mesh to confirm it adequately resolves the S(α , β ,T) functions for H-YH₂ and Y-YH₂
- Cross section measurements would be of use to more completely validate TSLs for ENDF/B