

NCSD 2013, Wilmington, NC

Fission Matrix Capability for MCNP

Forrest Brown, Sean Carney, Brian Kiedrowski, William Martin

Monte Carlo Codes, XCP, LANL NERS Dept., University of Michigan

1

Introduction

- Theoretical Basis of the Fission Matrix
- •Examples Higher Eigenmodes

Conclusions & Future work

Carney, Brown, Kiedrowski, Martin,

"Fission Matrix Capability for MCNP Monte Carlo", TANS 107, San Diego, 2012

Brown, Carney, Kiedrowski, Martin,

"Fission Matrix Capability for MCNP, Part I - Theory", M&C-2013, 2013

Carney, Brown, Kiedrowski, Martin,

"Fission Matrix Capability for MCNP, Part II - Applications", M&C-2013, 2013

- Knowledge of fundamental & all higher modes
 - "Crown Jewels" of analysis explains everything
- Reactor theory & mathematical foundations
 - Existence of higher modes
 - Eigenvalue spectrum discrete ? real ?
 - Forward & adjoint modes, orthogonality
- Fundamental reactor physics & crit-safety analysis
 - Higher-mode eigenvalues & eigenfunctions
 - Stability analysis of Xenon & void oscillations
 - High-order perturbation theory
 - Startup, probability of initiation
 - Subcritical multiplication problems
- Source convergence testing & acceleration
 - May provide robust, reliable, automated convergence test
 - Acceleration of source convergence

- Obtain integral equations for fission source from k-effective form of exact continuous-energy transport equation, forward & adjoint
- Segment the physical problem into N disjoint spatial regions
- Integrate the forward & adjoint integral fission source equations over r₀ & r Initial: r₀ ∈ V_J, Final: r ∈ V₁ H = Green's function

$$\begin{array}{ll} \mbox{Forward} & \mbox{Adjoint} \\ F_{I,J} = \int\limits_{\vec{r} \in V_I} d\vec{r} \int\limits_{\vec{r}_0 \in V_J} d\vec{r}_0 \frac{S(\vec{r}_0)}{S_J} \cdot H(\vec{r}_0 \rightarrow \vec{r}) & F_{I,J}^{\dagger} = \int\limits_{\vec{r} \in V_I} d\vec{r} \int\limits_{\vec{r}_0 \in V_J} d\vec{r}_0 \frac{S^{\dagger}(\vec{r}_0)}{S_J^{\dagger}} \cdot H(\vec{r} \rightarrow \vec{r}_0) \\ S_J = \int\limits_{\vec{r}' \in V_J} S(\vec{r}') d\vec{r}' & S_J^{\dagger} = \int\limits_{\vec{r}' \in V_J} S^{\dagger}(\vec{r}') d\vec{r}' \\ S_I = \frac{1}{K} \cdot \sum_{J=1}^{N} F_{I,J} \cdot S_J & S_I^{\dagger} = \frac{1}{K} \cdot \sum_{J=1}^{N} F_{I,J}^{\dagger} \cdot S_J^{\dagger} \end{array}$$

Exact equations for integral source $S_1 \& S_1^{\dagger}$ N = # spatial regions, F = N x N matrix, <u>non</u>symmetric

- $F_{I,J}$ = next-generation fission neutrons produced in region I, for each average fission neutron starting in region J (J \rightarrow I)
- Compare $F_{I,J}$ & $F^{\dagger}_{J,I}$, interchange integration order for $F^{\dagger}_{J,I}$

$$\begin{split} F_{I,J} &= \int\limits_{\vec{r} \in V_{I}} d\vec{r} \int\limits_{\vec{k}_{0} \in V_{J}} d\vec{r}_{0} \cdot \frac{S(\vec{r}_{0})}{S_{J}} \cdot H(\vec{r}_{0} \to \vec{r}) \\ F_{J,I}^{\dagger} &= \int\limits_{\vec{k}_{0} \in V_{J}} d\vec{r}_{0} \int\limits_{\vec{r} \in V_{I}} d\vec{r} \cdot \frac{S^{\dagger}(\vec{r})}{S_{I}^{\dagger}} \cdot H(\vec{r}_{0} \to \vec{r}) \end{split}$$

Same form, but different spatial weighting functions

mene

• If the spatial discretization is fine enough that

$$\frac{S(\vec{r}_0)}{S_J/V_J} \approx 1 \quad \text{for } \vec{r}_0 \in V_J \qquad \text{and} \qquad \frac{S^{\dagger}(\vec{r})}{S_l^{\dagger}/V_l} \approx 1 \quad \text{for } \vec{r} \in V$$

then

- Can neglect spatial weights, discretization errors ~ 0
- Can accumulate tallies of F_{I,J} even if not converged
- For fine spatial mesh, F⁺ = transpose of F

$$\overline{F}^{\dagger} = \overline{F}^{\dagger}$$

Monte Carlo Estimation of Fission Matrix

Monte Carlo K-effective Calculation

- 1. Start with fission source & k-eff guess
- 2. Repeat until converged:
 - Simulate neutrons in cycle •
 - Save fission sites for next cycle •
 - Calculate k-eff, renormalize source •
- 3. Continue iterating & tally results

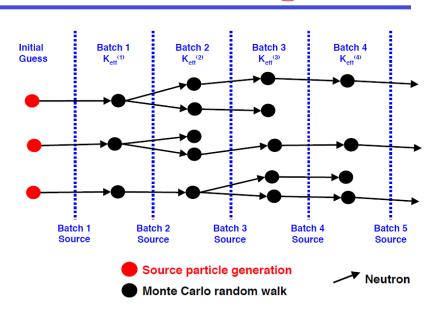
For Fission Matrix calculation

During standard k-eff calculation, at the end of each cycle:

- Estimate F_{LJ} tallies from start & end points in fission bank $(\sim free)$
- Accumulate F_{I,J} tallies, over all cycles (even inactive cycles)

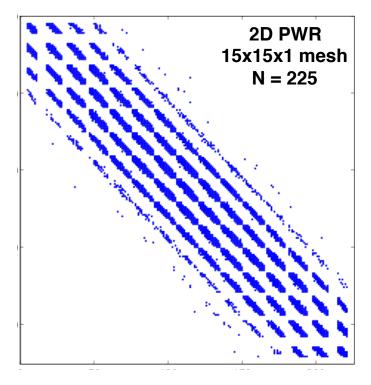
After Monte Carlo completed:

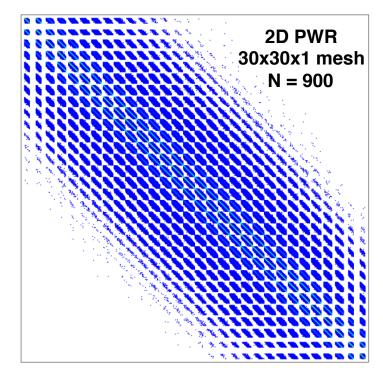
- Normalize F_{I,J} accumulators, divide by total sources in J regions
- Find eigenvalues/vectors of F matrix (power iteration, with deflation)



Monte Carlo Codes **XCP Division. LANL** LA-UR-13-27

- For a spatial mesh with N regions, F matrix is N x N
 - 100x100x100 mesh \rightarrow F is 10⁶ x 10⁶ \rightarrow 8 TB memory
 - In the past, memory storage was always the major limitation for F matrix
 - Compressed row storage scheme
 - Don't store near-zero elements, general sparsity
 - Reduced F matrix storage, no approximation
 - Can easily do 100x100x100 mesh on 8 GB Mac

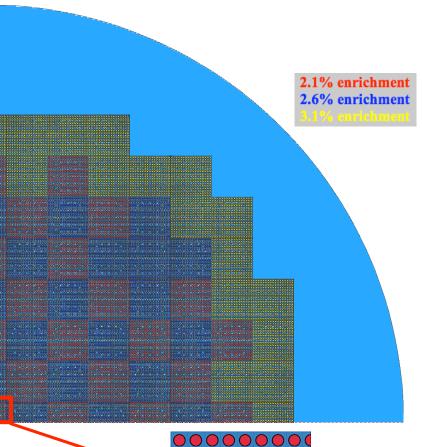




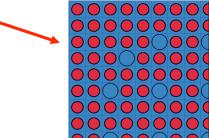
Whole-core 2D PWR Model

2D PWR (Nakagawa & Mori model)

- 48 1/4 fuel assemblies:
 - 12,738 fuel pins with cladding
 - 1206 1/4 water tubes for control rods or detectors
- Each assembly:
 - Explicit fuel pins & rod channels
 - 17x17 lattice
 - Enrichments: 2.1%, 2.6%, 3.1%
- Dominance ratio ~ .98
- Calculations used whole-core model, symmetric quarter-core shown at right
- ENDF/B-VII data, continuous-energy
- Tally fission rates in each quarter-assembly



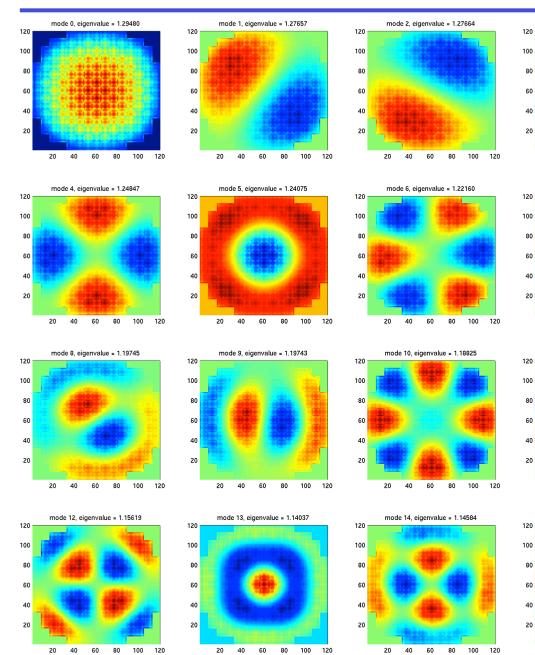
mene

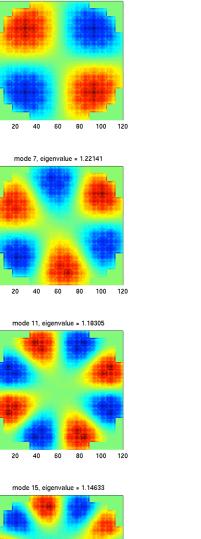


Monte Carlo Codes

XCP Division, LANI

PWR – Eigenmodes for 120x120x1 Spatial Mesh





100 120

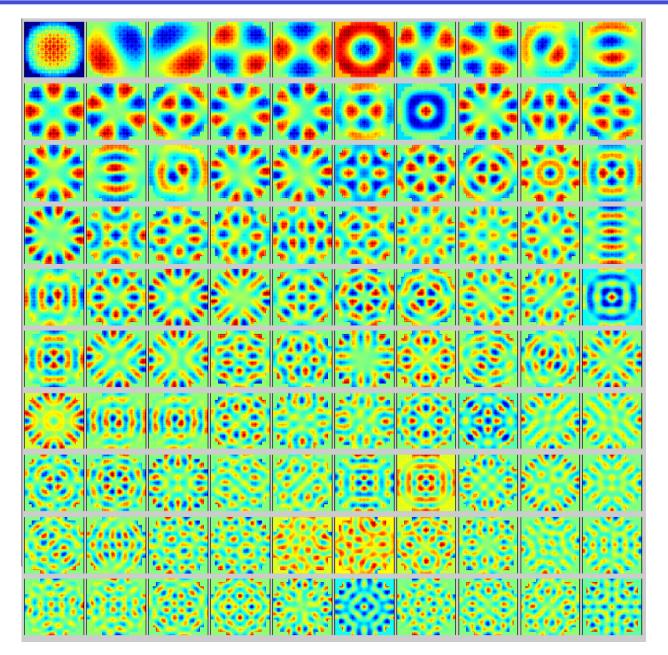
20 40 60 80

mode 3, eigenvalue = 1.25476

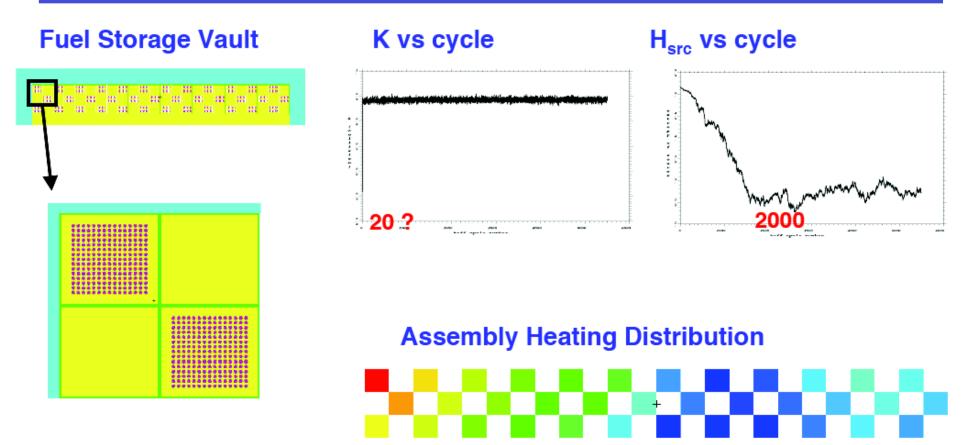
Monte Carlo Codes

XCP Division, LANL

PWR – First 100 Eigenmodes



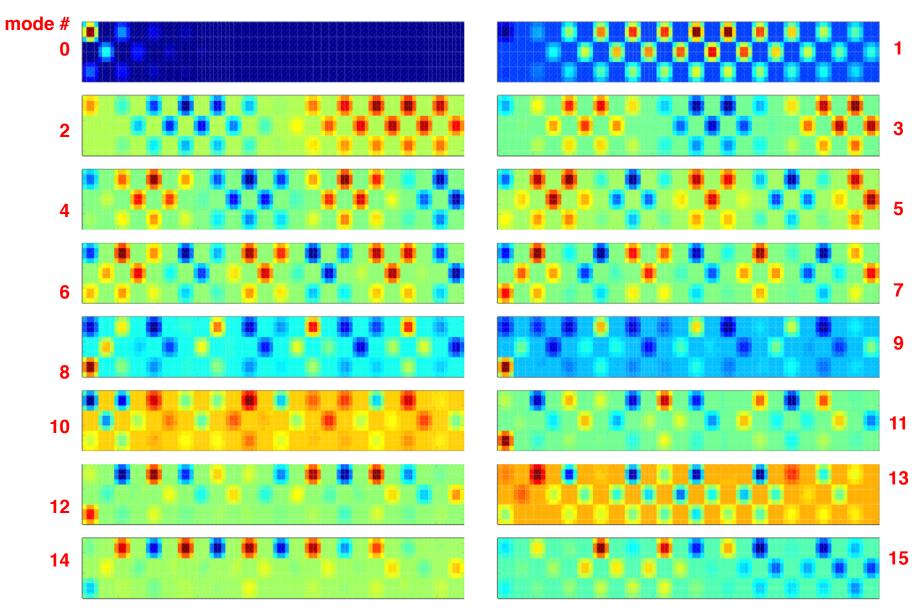
11



For this calculation,

- Should discard ~20 cycles if calculating Keff only
- Should discard ~2000 cycles if calculating heating distribution

XY Eigenmodes of Fuel Vault Problem, 96 by 12 by 10



XY planes mid-height. Axial shape is cosine, #10,13,15 have change in sign in z

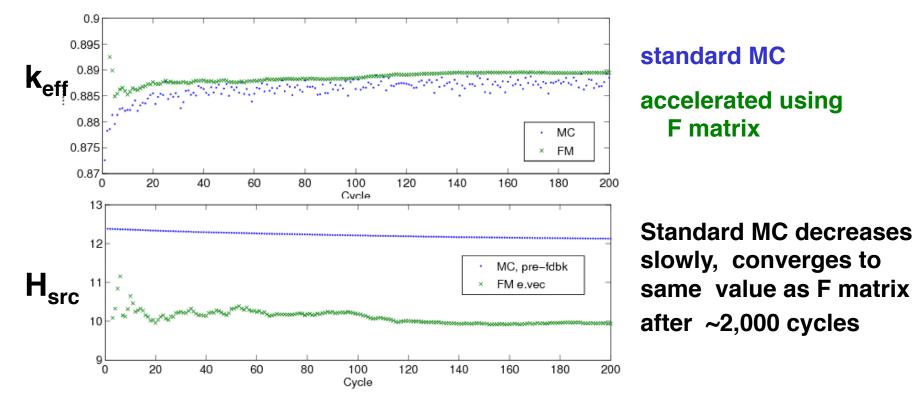
Monte Carlo Codes

XCP Division, LANL LA-UR-13-27376

menp

It takes ~2,000 cycles for standard MC to converge for this problem,

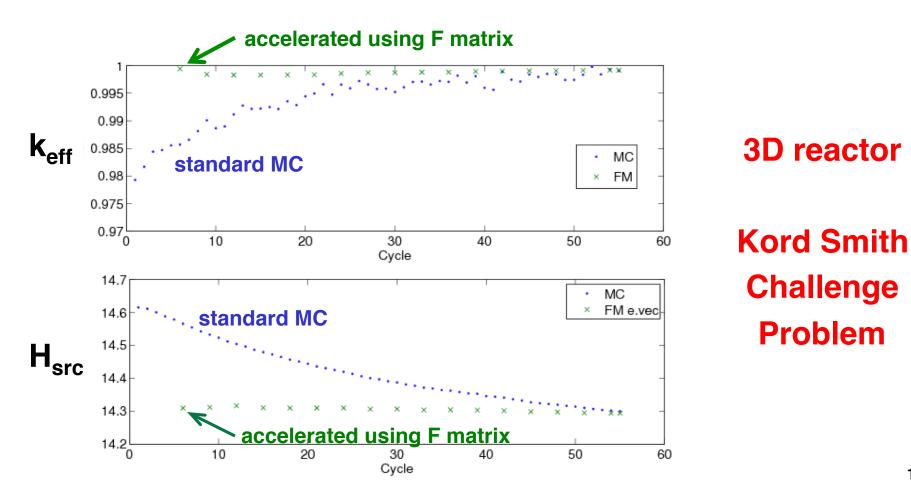
Using the fission matrix for source convergence acceleration, only ~20 cycles are needed



17

Convergence Acceleration Using Fission Matrix

- Fission matrix can be used to accelerate convergence of the MCNP neutron source distribution during inactive cycles
- Requires only fundamental forward mode
- Very impressive convergence improvement



- Derived theory underlying fission matrix method
 - Rigorous Green's function approach, no approximations
 - Specific conditions on spatial resolution required for fission matrix accuracy
 - If spatial resolution fine enough, adjoint fission matrix identical to transpose of forward fission matrix
- Fission matrix capability has been added to MCNP6 (R&D for now)
- Applied to realistic continuous-energy MC analysis of typical reactor models. Can obtain fundamental & higher eigenmodes
- Higher eigenmodes are important for

BWR void stability,	higher-order perturbation theory,
Xenon oscillations,	quasi-static transient analysis,
control rod worth,	correlation effects on statistics,
accident behavior,	etc., etc., etc.

Can provide very effective acceleration of source convergence

- Use fission matrix to accelerate source convergence
 - Already demonstrated; very effective; needs work to automate
- Use fission matrix for automatic, on-the-fly determination of source convergence
 - Automate the determination of "inactive cycles"
- Use fission matrix to assess problem coverage
 - Need more neutrons/cycle to get adequate tallies?
- Higher modes can be used to reduce/eliminate cycle-to-cycle correlation
 bias in statistics
 - Replicas & ensemble statistics may be better, for exascale computers
- Apply higher-mode analysis to reactor physics problems
 - Higher-order perturbation theory, Xenon & void stability, slow transients, etc.

Questions ?

See Sun Valley M&C-2013 papers & talks for more examples, applications, ideas.

[on mcnp.lanl.gov website]