

Impact of Correlated Benchmark Experiments on the Computational Bias in Criticality Safety Assessment

Matthias Bock, Matthias Behler

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH September 30, 2013 NCSD 2013 Wilmington, NC, USA

Introduction

- Code validation is an important issue in criticality safety assessments
- Typically critical experiments are performed in series using the same apparatus and experimental equipment
- Determine the impact of correlated benchmark experiments on the computational bias
- Based on a benchmark proposal discussed at the 2012 meeting of the UACSA Expert Group of the OECD/NEA, Uncertainty analysis was used to derive the correlation matrix between the k_{eff} values of 21 cases of the experiment LCT-007 and LCT-039
- So far, two methods are used to derive the computational bias:
 - Trending analysis
 - TSUNAMI/TSURFER

"Impact of Benchmark Correlations on the Bias Determination"

Reminder: Mean Value and Standard Deviation

- All mean values below k_{eff} = 1
 - Thus, with these k_{eff} values a bias of approx. -0.003 (+ uncertainty) can be expected
 - Standard deviations are between 1.1E-03 and 4.7E-03

Reminder: Correlation Matrix

- High correlations up to almost 100% between benchmark experiments
 - However, two cases have significantly lower correlation coefficients

Benchmark Task & Application Case

- Benchmark task according to UACSA benchmark proposal:
 - Determination the computational bias for an application case in two ways:
 - Assuming, the 21 benchmark experiments are uncorrelated
 - Considering the correlation matrix derived from the common variation of shared uncertain parameters
- Application case:
 - Single 16×16-20 PWR UO₂ fuel assembly
 - Fully reflected by water
 - Achieved by modeling 60 cm of water around the fuel assembly in all directions
 - One sort of fuel pins with 5 wt.-% U-235 enrichment
 - Pitch of 1.43 cm
 - UO₂ density of 10.96 g/cm³

Application Case Results

- The application case also run with SCALE's CSAS5 sequence
 - Configuration similar to the validation experiments
 - However, the convergence criterion was set to 2.0E-05
- Result for the neutron multiplication factor: 0.969979 ± 0.000020
- Result for the trending parameter EALF: 2.36489E-01 ± 1.83343E-05
 - This is within the range of EALF values from the validation pool:
 - Interpolation possible for the trending analysis
- TSUNAMI-3D-K5 result: 1σ k_{eff} uncertainty: 6.675E-03
 - Similar to the results from the validation pool

Trending Analysis

- Assuming a linear fit function:

$$f(EALF) = a \times EALF + b$$

• Bias of the application case:

$$Bias_{app} = f(EALF_{app}) - 1.0$$

	Fit Options									
	Mean Values Only	k _{eff} Variances		k _{eff} Cov	variances	k _{eff} and EALF Covariances				
	Value	Value	Uncertainty	Value	Uncertainty	Value	Uncertainty			
a [1/eV]	4.260E-04	2.385E-03	1.800E-02	-1.420E-03	3.900E-04	-5.179E-02	3.400E-04			
b	9.969E-01	9.969E-01	3.400E-03	1.007E+00	4.300E-04	9.984E-01	1.200E-05			
$k_{eff}(EALF_{app})$	9.970E-01	9.974E-01	5.314E-03	1.007E+00	4.390E-04	9.867E-01	7.806E-05			
bias	-3.003E-03	-2.559E-03	5.314E-03	6.678E-03	4.390E-04	-1.335E-02	7.806E-05			

Trending Analysis

- Assuming a linear fit function:

$$f(EALF) = a \times EALF + b$$

Bias of the application case:

$$Bias_{app} = f(EALF_{app}) - 1.0$$

Trending Analysis

- Assuming a linear fit function:

$$f(EALF) = a \times EALF + b$$

• Bias of the application case:

$$Bias_{app} = f(EALF_{app}) - 1.0$$

• Selecting experiments similar to the application case, i.e. choosing EALF > 0.2:

Fit Options									
Mean Values Only	k _{eff} Variances		k _{eff} Cov	variances	k _{eff} and EALF Covariances				
Value	Value	Uncertainty	Value	Uncertainty	Value	Uncertainty			
-2.977E-02	-3.196E-02	1.400E-01	-1.729E-02	1.100E-02	-4.367E-01	5.800E-03			
1.003E+00	1.003E+00	3.000E-02	1.006E+00	1.100E-03	1.052E+00	6.100E-04			
9.962E-01	9.957E-01	4.369E-02	1.002E+00	2.727E-03	9.529E-01	1.450E-03			
-3.754E-03	-4.250E-03	4.369E-02	2.078E-03	2.727E-03	-4.707E-02	1.450E-03			
	Mean Values Only Value -2.977E-02 1.003E+00 9.962E-01 -3.754E-03	Mean Values Only k _{eff} Value Value Value -2.977E-02 -3.196E-02 1.003E+00 1.003E+00 9.962E-01 9.957E-01 -3.754E-03 -4.250E-03	Fit Mean Values Only k _{eff} Variances Value Value Uncertainty -2.977E-02 -3.196E-02 1.400E-01 1.003E+00 1.003E+00 3.000E-02 9.962E-01 9.957E-01 4.369E-02 -3.754E-03 -4.250E-03 4.369E-02	Fit Options Mean Values Only k _{eff} Variances k _{eff} Cov Value Value Uncertainty Value -2.977E-02 -3.196E-02 1.400E-01 -1.729E-02 1.003E+00 1.003E+00 3.000E-02 1.006E+00 9.962E-01 9.957E-01 4.369E-02 2.078E-03 -3.754E-03 -4.250E-03 4.369E-02 2.078E-03	Fit Options Mean Values Only k _{eff} Variances k _{eff} Covariances Value Value Uncertainty Value Uncertainty -2.977E-02 -3.196E-02 1.400E-01 -1.729E-02 1.100E-02 1.003E+00 1.003E+00 3.000E-02 1.006E+00 1.100E-03 9.962E-01 9.957E-01 4.369E-02 1.002E+00 2.727E-03 -3.754E-03 -4.250E-03 4.369E-02 2.078E-03 2.727E-03	Fit Options Mean Values Only k _{eff} Variances k _{eff} Covariances k _{eff} and EAI Value Value Uncertainty Value Uncertainty Value -2.977E-02 -3.196E-02 1.400E-01 -1.729E-02 1.100E-02 -4.367E-01 1.003E+00 1.003E+00 3.000E-02 1.006E+00 1.100E-03 1.052E+00 9.962E-01 9.957E-01 4.369E-02 2.078E-03 2.727E-03 9.529E-01 -3.754E-03 -4.250E-03 4.369E-02 2.078E-03 2.727E-03 -4.707E-02			

The same qualitative behavior of the bias

Visualization of Results

• Variances only:

• Covariances in k_{eff} and EALF:

TSURFER Results

- Using the TSUNAMI results for the sensitivities on nuclear reactions
 - Testing the impact of different fit options and recommendations
 - Two sources of uncertainties: the SUnCISTT analysis and the ICSBEP values
- Assuming uncorrelated benchmark experiments:

Analysis	Uncertainty	Additional configuration	Active	Calculated	Relative	Relative	Ring	Relative bias	Adjusted
ID	source	Additional configuration	benchmarks	k _{eff} value	uncertainty	Bias	DIdS	uncertainty	k _{eff} value
11	SUnCISTT		21/21			-0.24051	-0.0023300	0.13029	0.97112
12	SUnCISTT	offdiag. corr. coeff. = 0	21/21			-0.24321	-0.0023562	0.13110	0.97115
13	SUnCISTT	EALF > 0.2	12/21	0.96879	0.689	-0.29536	-0.0028614	0.15500	0.97165
14	ICSBEP		21/21			-0.26039	-0.0025226	0.10163	0.97131
15	ICSBEP	EALF > 0.2	12/21			0.30426	-0.0029477	0.10422	0.97174

- Neglecting correlations results in a similar bias even for different configurations
- Bias close to the expected value

TSURFER Results

- Using the TSUNAMI results for the sensitivities on nuclear reactions
 - Testing the impact of different fit options and recommendations
 - Two sources of uncertainties: the SUnCISTT analysis and the ICSBEP values
- Taking into account the correlations of k_{eff} from the SUnCISTT analysis:

Analysis	Uncertainty	Additional		Active	Calculated	Relative	Relative	Bias	Relative bias	Adjusted			
ID	source	configuration	X ⁻ /NDF cut	DF cut benchmarks	k _{eff} value	uncertainty	Bias		uncertainty	k _{eff} value			
C 1	SUnCISTT		1.2	7/21	0.96879		0.34209	0.0033142	0.22285	0.96548			
C2	\$UnCISTT	corr. coeff. < 0.95	1. 2	20/21		0.96879	0.96879		0.081759	0.00079208	0.2287	0.968	
C3	SUnCISTT		infinite	21/21				0.690	1.6414	0.015902	0.16339	0.95289	
C4	SUnCISTT	EALF > 0.2	1. 2	5/12				0.300/3	0.085	-0.024391	-0.0002363	0.20913	0.96903
C5	ICSBEP		1. 2	2/21					-0.18643	-0.0018061	0.14659	0.9706	
C6	ICSBEP		infinite	21/21			-1.2482	-0.012092	0.097195	0.98088			

- Large variations in estimated bias (-0.012 \rightarrow +0.016) and in adjusted k_{eff} value (0.953 \rightarrow 0.981)

Discussion of Results

Discussion of Results for this example:

- The computational bias strongly depends on the configuration of the calculation method
- For the uncorrelated case, the two approaches under investigation yield similar results
- However, taking the correlations into account, for some configurations the adjustment procedure returns counterintuitive results
 - "known feature" of the χ^2 -fit in case of very high correlations, other similar examples can be found in the literature.
- In the TSURFER approach, the variances assigned to each benchmark experiment have an impact on the result
 - The discrepancies found between the ICSBEP and the SUnCISTT results have to be resolved
- So far no conclusive determination of the bias, if correlations are included

Summary & Outlook

- The correlation matrices derived with GRS' SUnCISTT have been applied in the determination of the computational bias of an application case
- Two common procedures have been tested:
 - Trending analysis, using EALF as trending parameter
 - SCALE's TSUNAMI/TSURFER approach
- Results neglecting the correlations are in agreement
- Once correlations are introduced, the result depends on the configuration of the method in both cases
- The treatment of correlated benchmark experiments in the validation is a topic for further research
- The best practice to use uncorrelated benchmark experiments as basis for the validation pool avoids these challenges

Impact of Correlated Benchmark Experiments on the Computational Bias in Criticality Safety Assessment

Matthias Bock, Matthias Behler

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH September 30, 2013 NCSD 2013 Wilmington, NC, USA

Comparison with TSUNAMI Results

- Analysis of uncertainties due to neutron cross-sections with the TSUNAMI-3D-K5 sequence of ORNL's SCALE program suite
 - TSUNAMI results needed for the bias determination with TSURFER
- Overall: the uncertainties are higher compared to the variation of the manufacturing tolerances
 - 7.0E-03 6.5E-03 k_{eff} uncertainty (1σ) 6.0E-03 5.5E-03 5.0E-03 101001002 101001003 15-001-004 101.039.001 1039,002 LC1.039.003 1039.004 151.039.005 LC1.039,006 101.039,001 101.039.008 101.039.009 10039010 101.039.012 101.039.014 10039.015 101-039-011 101.039.013 151.039,016 101-001-001 10039017 Experiment ID September 30, 2013
 - Similar trend for LCT-007-003 and LCT-007-004

Trending Analysis with EALF

- The benchmark experiments are correlated in the trending parameter EALF
- LCT-007-003/004 are highly correlated
- These correlations have to be taken into account in the trending analysis
- The RooFiLab tool provides the possibility to fit correlated parameters
 - It relies on the well established TMinuit algorithms in the ROOT framework

