

TRENDS OF THE DETERMINISTIC ROUTE APOLLO2.8 / JEFF-3.1.1 OF CRISTAL V2 CRITICALITY PACKAGE IN ICSBEP BENCHMARKS

C. Riffard, C. Carmouze and A. Santamarina, CEA, DEN, DER, SPRC Cadarache

G. Grassi, AREVA NC

DEN ANS NCSD 2013 - Criticality Safety in the Modern Era: Raising the Bar

CEA | OCTOBER 2013 | PAGE 1

<u>Outlook</u>

- 1. Introduction
- 2. Deterministic schemes in Criticality Package CRISTAL V2
- 3. Experimental validation process of the Design Route « APOLLO2 Sn »
- 4. Results and feedback
 - Improvements due to the European JEFF-3.1.1 evaluation
 - Criticality calculation of thermal lattices
- 5. Conclusion

1. Introduction

- <u>Purpose</u> : multigroup deterministic route in the criticality package CRISTAL V2
- Features

- A <u>Design Route</u> including the accurate JEFF-3.1.1 / 281-G [SHEM] Library , The major version APOLLO2.8 with new capabilities in the domain of cross section selfshielding : resonance overlap treatment, transfer matrix self-shielding, new or improved flux solvers.
- Specific procedures : self-shielding, homogenization and collapsing of self-shielded cross sections, treatment of space, angular and energy variables in the Boltzmann equation solving by the <u>Discrete Ordinate Method</u> (**Sn**).
- A <u>Standard Route</u> including new capabilities in the deterministic schemes and in the procedures of CRISTAL V2.0 (Sn bias estimation).

15 years feedback of LWR studies in neutronics codes and evaluation, extensively used in the French industry (AREVA, EDF) and fully integrated in the reference JEFF-3.1.1 evaluation.

Experimental validation object

- * Evaluating biases and uncertainties associated to the multi-group treatment,
- Collecting an extensive feedback from representative benchmarks of criticality safety studies.

2. Deterministic schemes

Components used in the multigroup « APOLLO2 Sn » Route

- Transport code APOLLO2.8 / resonant mixture model
 - Handles the resonance overlap between 33 66 eV of the main actinides (²³⁸U, ²⁴⁰Pu, ²³⁹Pu) as well as absorbers (¹⁷⁶⁻¹⁸⁰Hf),
 - Specific options implemented for the multigroup scattering cross sections treatment of intermediate mass isotopes (⁵⁶Fe) in thick reflectors.

Avoid self-shielding models for the whole resonances of major and minor actinides, main Fission

Products and LWR absorbers which are explicitly described

CEAV5.1 libraries

DEN

Consistent multigroup / pointwise JEFF-3.1.1 libraries (CEAV5.1 for APOLLO2.8 and TRIPOLI-4.8)

CRISTAL V2.0 Procedures

Include recommended schemes (Pij – Sn) adapted to each configuration :

- Self-shielding in fissile (from H/X = 0), structure (metallic reflectors) and absorbent (Hf), 20-G collapsing of 281-G self-shielded cross sections, validated against TRIPOLI-4.8 & the reference "SHEM MOC" in LWR applications.
- Specific homogenization for lattices.

DE LA RECHERCHE À L'INDUSTRI

Main principles of the experimental validation process of the multigroup « APOLLO2 Sn » Route of CRISTAL V2.0

Selection of benchmarks

- Quality
- Representativity / industrial application
- Modelization in 2 or « pseudo » 3-D with the Sn solver of APOLLO2
- CRISTAL V1.2 experimental Database fully re-interpreted
- Additional experiments (GEN IV)

Feedback

- C/E Comparison of CRISTAL V2.0 and CRISTAL V1.2
- CRISTAL V2.0 contribution in the reduction of criticality margins in industrial applications
 - Ex : reduction of the former overestimation of steal reflected metal systems

[J.M. Gomit et al., ICNC 2011]

- Experimental validation results
 - Detailed results provided and exploited in CEA/DER/SPRC tools DIANE and RIB
 - Integral Experiment Methodology for the validation of criticality studies
 - Average tendencies to be published
 - Specific results of private programs dedicated to Burnup Credit applications with the French BUC Route

[C. Carmouze et al., NCSD 2013]

Experimental Database retained for the « APOLLO2 Sn » Route

701 cases of 147 series are available in the current Validation Report, from ICSBEP Handbook 2011

(CRISTAL V1 configurations) :136 casesPU (metallic, solution)136 casesHEU (metal, solution, compound)217 casesLEU (miscellaneous, solution, compound)170 casesMIX (solution, compound, miscellaneous, metal)172 casesIEU (metal)6 cases

Specific programs in CEA/Cadarache dedicated to Burnup Credit (MINERVE) and low-moderated MOX

lattices validation (ERASME-S, integrated in ICSBEP)

[A. Chambon et al., NCSD 2013]

ZPR EOLE (Cadarache)

Covered domain

- <u>Unreflected / reflected configurations</u> : steal, concrete, beryllium, tungsten carbide, aluminium, light and heavy water, graphite, nickel, lead, polyethylene, uranium
- Poisoned benchmarks : boron, gadolinium, cadmium
 - Moderation ratios :

Uranium systems : homog. fiss. H/U [0 - 2100], heterog. fiss. Vm/Vf [0.5 - 21], *Plutonium systems* H/Pu [0 - 2800].

DEN

CEA | OCTOBER 2013 | PAGE 7

1. Introduction | 2. Deterministic schemes | 3. Experimental validation process | 4. Results | 5. Conclusion

C. Riffard et al., APOLLO2.8 / JEFF-3.1.1 route of CRISTAL V2.0

HIGH ENRICHED URANIUM SYSTEMS (SOLUTIONS)

²³⁵U new evaluation of capture resonance width $<\Gamma\gamma> = 40$ meV, instead of 35 meV in JEF2

[A. Santamarina, ICNC 2011]

Water-moderated benchmarks : average of +20 pcm with a standard deviation of 620 pcm (1σ) (~ - 400 pcm / JEF2.2)

Slight reduction of the well mastered average bias in LEU-SOL benchmarks.

DEN

PLUTONIUM SOLUTIONS

²³⁹Pu new evaluation of v, checked with measurement of a ²³⁹Pu sample oscillated in the OSMOSE program; <u>reduction of the former</u> <u>overestimation of low</u> <u>concentrated Pu solutions</u>

DEN

CEA | OCTOBER 2013 | PAGE 9

1. Introduction | 2. Deterministic schemes | 3. Experimental validation process | 4. Results | 5. Conclusion

C. Riffard et al., APOLLO2.8 / JEFF-3.1.1 route of CRISTAL V2.0

^{239,241}Pu, ²³⁸U, ²³⁵U new evaluations in JEFF-3.1.1driven by feedback on ND from EOLE, ICSBEP and french PIE : reduction of the former underestimation (-500 pcm) of LCT benchmarks

[A. Santamarina, ICNC 2011]

Average Biases LEU-COMP-THERM : 580 ± 30 pcm MIX-COMP-THERM : 450 ± 50 pcm APOLLO2 Sn scheme effect : ~ 350 pcm

overestimation of thermal lattices, consistent with CRISTAL V1.2.

DEN

CEA | OCTOBER 2013 | PAGE 10

Calculation - Experiment comparison using the "APOLLO2 Sn" calculation route of CRISTAL V2.0

Main Components of CRISTAL V2.0 drive the experimental validation of the CRISTAL V2 package.

<u>JEFF-3.1.1 / SHEM library</u>

New ²³⁵U evaluation in JEFF-3.1.1 is particularly highlighted in Highly Enriched Uranium Thermal and Fast systems, showing a reduction of the former overestimation of the keff. ²³⁹Pu improvement in JEFF-3.1.1 is confirmed by an increased accuracy in calculating plutonium solution benchmarks.

APOLLO2 Sn schemes and specific procedures based on APOLLO2.8 major version "APOLLO2 Pij"

Improvements in metal-reflected configurations, due to the new multigroup cross section treatment of intermediate mass isotopes (self –shielded ⁵⁶Fe).

"APOLLO2 Sn"

Well mastered Sn biases (energetic collapsing and homogeneization) in thermal lattices.

> Improved accuracy and ergonomy of the multigroup "APOLLO2 Sn" Route of CRISTAL V2.0.