

ANS NCSD 2013 - Criticality Safety in the Modern Era: Raising the Bar Wilmington, NC, September 29 – October 3, 2013

Exclusion of Criticality for a Final Repository in a Saline Host Rock based on the Neutron Absorbing Properties of ³⁵Cl

Robert Kilger, Matthias Bock, and Bernhard Gmal

Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH

Boltzmannstr. 14

D-85748 Garching n. Munich

Germany

Outline

- Introduction and background
- Methods and assumptions
- Calculation results
 - Intact cask models
 - Exemplary long term degradation cases (selection)
 - Research- and prototype reactor fuels
- Code validation issues
- Summary and conclusions

Introduction and Background

- Studies in the context of the "Preliminary Safety Analysis of the Gorleben Site"
 - Proposed repository in a stable, deep geological salt dome
 - Existing pilot mine within a large, in other respects unworked salt formation
 - Depth of proposed emplacement area about 850 m below ground level
 - Emplacement area mainly consists of solid Magnesium Chloride MgCl₂
 - Disposal cask concepts BSK-3 and POLLUX-10
 - Concept study for the feasibility of direct disposal of transport/storage casks ("DIREGT" concept)
- German "Safety Requirements Governing the Final Disposal of Heat—Generating Radioactive Waste" stipulate Exclusion of Criticality for the whole reference period of one million years

Remark: The salt dome at Gorleben in Lower Saxony, Germany, was the primarily investigated repository site since the 1970s, until the federal *Repository Site Selection Act* ("Standortauswahlgesetz, StandAG") entered into force end of Juli 2013, in order to restart a country-wide, consensual and open-ended site search without preselection.

Methods and Assumptions

Calculation Methods

- Generic cask models
- PWR UO₂ fuel 4,0%, fresh fuel assumption (no burn-up credit)
- Different research and prototype reactor fuels

Deterministic Analysis

- Intrusion of brine is considered very unlikely, hence postulated
- As a consequence, also degradation cases are postulated
- No assessment of point in time or probability of occurrence
- Analyses based on the inventory of a single cask, respectively
- No accumulation of inventories of multiple casks assumed

Applied Calculation Tools

- KENO VI from SCALE 6.0
- MCNP5 Version 1.51
- ENDF/B-VII cross sections as supplied with the codes

Relevant Properties of ³⁵Cl and Saturated Brine

- Any solution possibly intruding the emplacement area within the large salt dome can be credibly assumed as saturated brine, based on the host rock composition
- Properties of 35CI
 - Thermal absorption cross section 43.7 barn
 - Natural abundance 75.76 %
- Representative solution sample from the Gorleben salt dome as basis for "saturated brine"
 - MgCl₂ concentration 466 g per liter, comprising 356 g Cl per liter, or 270 g ³⁵Cl per liter
 - Brine density1.345 g per liter

Cask Models under Scope (cross section views, not to scale)

BSK-3

(comprises compacted fuel rods from three PWR assemblies)

POLLUX-10

(comprises compacted fuel rods from ten PWR assemblies)

DBB19

(generic, CASTOR®-based cask model; comprises complete PWR assemblies)

Consecutive Degradation Cases under Scope

- The following postulated degradation cases are investigated
 - Ingress of water/brine to the emplacement area, providing
 - Moderator
 - Corrosive agent
 - Flooding of in other respects intact casks (reference case)
 - Loss of implemented neutron absorbers due to chemical reactions with the brine (only applicable for DBB19 model)
 - Loss of internal basket structures and collapse of fuel structures due to corrosive reactions (especially pronounced for DBB19 model)
 - Degradation of uranium dioxide due to chemical processes and formation of non-stochiometric uranium-based mineral phases (relevant for all cask models)
- No claim for completeness is made!

Results: Intact but flooded PWR Fuel Casks

	k± σ Reference Case subcritical by design	k±σ Reduced k _{eff} due to ³⁵ Cl
Moderator	Pure Water	Saturated Brine
BSK-3	0,77492 ± 0,00054	0,66680 ± 0,00047
POLLUX-10	0,71177 ± 0,00019	0,62997 ± 0,00017
DBB19	0,92742 ± 0,00014	0,56452 ± 0,00010

Exemplary Degradation Cases (1): DBB19, Postulated Loss of Fixed Boron

- Loss of implemented fixed boron due to chemical processes after flooding of the cask interior with brine assumed
- ts,
- Model: Boron removed from in-cask borated stainless steel components, the remainder being unchanged

Moderator	k _{eff} ± σ
Pure Water	1,04386 ± 0,00025
Saturated Brine	0,63139 ± 0,00016

Model essentially subcritical when taking into account ³⁵Cl

 Note: This degradation case does not apply for BSK-3 and POLLUX-10 casks, as they do not rely on implemented neutron absorbers

Exemplary Degradation Cases (2): Degradation of DBB19 Basket Structure

- After loss of boron, consecutive collapse of basket structures assumed
- Conservative assumption of regulary fuel assembly configuration

DBB19 calculation model comprising degraded basket structure

Exemplary Degradation Cases (2): Degradation of DBB19 Basket Structure – Parameter Study

Exemplary Degradation Cases (3): Formation of Mineral Phases inside POLLUX-10 Cask

POLLUX-10

 Long term: interior cask structure fully degraded (removed from the model)

- UO₂ degraded to U₃O₈, porously filling inner cask volume
- Residual pore volume filled with moderator, homogenized

Moderator	k _{eff} ± σ	
Pure Water	1,25774 ± 0,00031	
Saturated Brine	0,83166 ± 0,00024	

Model essentially subcritical when taking into account ³⁵Cl

Research and Prototype Reactor Fuels

- Recent and legacy fuels from research and prototype reactors
 - Currently stored, not foreseen for further use; probably cannot be repatriated
 - Mainly small amounts of
 - Uranium-based fuels from 20% up to 93% enrichment
 - Fuels based on mixtures of HEU and Plutonium (e.g. breeder driver fuels)
 - Fuels bearing Plutonium, Thorium and ²³³U
 - Others
- No dedicated disposal concept exists up to now
 - Feasibility of direct disposal of the respective storage casks is investigated
- For the fuels of highest reactivity, also with regard for ³⁵Cl criticality cannot be excluded by simple assessment, based on the inventory of a single cask
 - Further conditioning measures may become necessary

Code Validation and Qualification Issues

- No evaluated criticality benchmark experiments available which significantly involve 35Cl
 - Currently, no such experiments are planned worldwide
 - A few polyvinyl chloride bearing experiments with insignificant reactivity contribution of ³⁵Cl are published; benefits are limited
 - First investigations on potential experimental configurations probably being useful have started, probably to be discussed in the future
- Thus at the moment, appropriate code validation remains a major challenge
- To mitigate this situation it can be useful to apply
 - Sophisticated sensitivity and uncertainty analysis tools in order to gain deeper understanding of the negative reactivity contribution of ³⁵Cl in the systems under scope
 - TSUNAMI (ORNL), neutron induced reaction cross sections
 - XSUSA, SUnCISTT (GRS), neutron induced reaction cross sections; technical parameters
 - Sufficiently large safety margins
 - Max. calculated k_{eff} including saturated brine is about 0.85 (LWR fuel) in this study

Summary and Conclusions

- Work has been conducted in the context of "Preliminary Safety Analysis of the Gorleben Site" in Germany, comprising a deep geological salt dome
- Criticality in the post-closure phase of a repository is excluded without intrusion of moderator; hence intrusion of brine was postulated → deterministic approach
- Exclusion of criticality for single casks loaded with PWR fuel without burn-up credit is feasible in case of full regard for neutron absorbing properties of ³⁵Cl
 - Exclusion of criticality [...] without regard for ³⁵Cl not feasible for all types of casks and degradation cases
 - Further analyses involving BWR and MOX fuels (not presented here) yield similar results
- Exclusion of criticality for research and prototype reactor fuels more demanding, probably requiring further conditioning
- Code validation remains an issue; proper code validation requires additional evaluated benchmark experiments; conceivable alternatives are under investigation

Thank you very much for your attention!

Any questions?