DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Full Burnup Credit conservatisms in PWR-UOx industrial applications, due to the correction and penalty factors derived from the French experiments using the JEFF3.1.1 evaluation

Coralie CARMOUZE, Cécile RIFFARD, Alain SANTAMARINA

CEA, DEN, CAD, DER, SPRC - Saint Paul-lez-Durance, France

Gabriele GRASSI

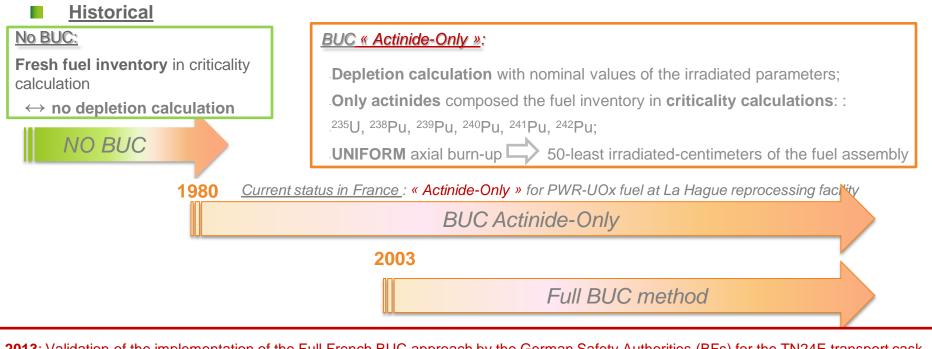
AREVA-NC, BU RECYCLAGE - Paris, France

"Criticality Safety in the Modern Era: Raising the Bar" September 29 - October 3, 2013 • Hilton Wilmington Riverside • Wilmington, NC USA

Context

- The full BUC method
 - Calculation route and new features
 - Different steps and assumptions
 - Evaluation of associated conservatisms
 - **Burnup-credit estimation**
- Conclusion and prospect

"Full Burnup Credit conservatisms in PWR-UOx industrial applications, due to the correction and penalty factors derived from the French experiments using the JEFF3.1.1 evaluation"



Concept of Burnup Credit (BUC)

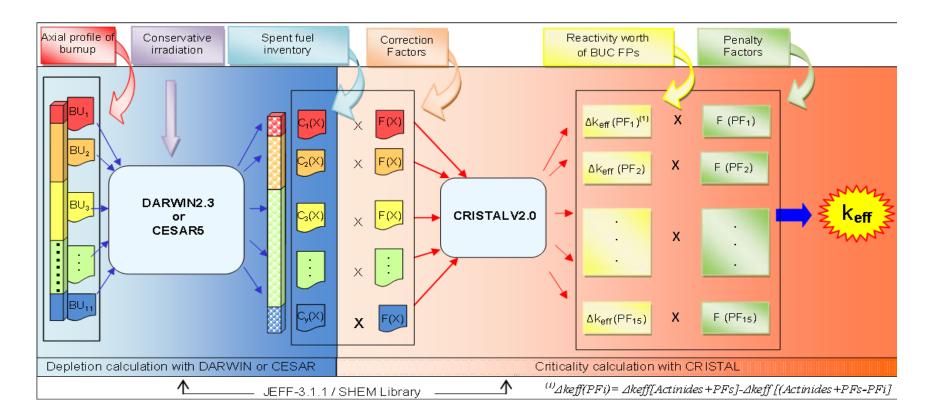
Taking credit for the reduction of the reactivity of nuclear spent fuel due to their burnup is referred to as **"Burnup Credit" (BUC).**

Allowing reactivity credit for spent nuclear fuels offers many economic incentives.

Background : Increasing ²³⁵U enrichments **Applications** : Transport, Storage

2013: Validation of the implementation of the Full French BUC approach by the German Safety Authorities (BFs) for the TN24E transport cask

Full Burnup Credit conservatisms in PWR-UOx industrial applications,


- <u>2003</u>: New and more rigorous method / reducing the conservatisms \rightarrow « Full BUC » method
 - Depletion calculations with <u>conservative conditions</u> of irradiation (MOX surrounding, control rods...)
- Criticality calculations:
 - Fuel inventory composed of 12 ACTINIDES and 15 FISSION PRODUCTS (absorbing stables and non volatile)
 - Application of Isotopic Correction Factors
 - Definition of a conservative axial burnup profile
- **<u>2009</u>**: Determination of a conservative axial burnup profile
- **<u>2011</u>**: Determination of new correction factors with the recent JEFF3.1.1 / SHEM library
- **<u>2013</u>**: Complete Full BUC method and impact evaluation of an industrial case with the latest version of the codes (DARWIN2.3 and CRISTALV2.0) and library (JEFF3.1.1)

Full Burnup Credit conservatisms in PWR-UOx industrial applications,

Connexion of a depletion code: DARWIN and a criticality- safety package: CRISTAL

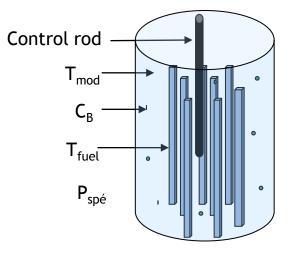
New Version of codes and ND library : (JEFF3.1.1-SHEM / APOLLO2.8.3) DARWIN2.3 or CESAR5.3 / CRISTALV2*.0.dev

* The Criticality Package CRISTALV2 has been developped jointly by IRSN, CEA and AREVA

« Trends of the deterministic route APOLLO2.8/JEFF3.1.1 of CRISTAL V2 Criticality Package » C. Riffard & all - Topical session Method I

"Full Burnup Credit conservatisms in PWR-UOx industrial applications,

Which purpose ?

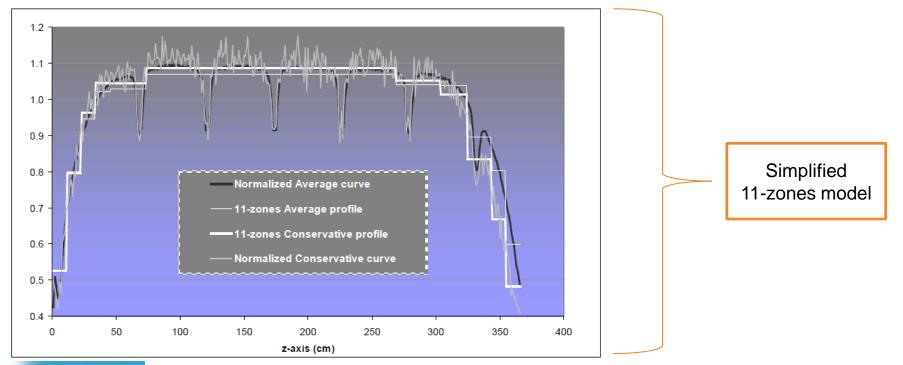

Guaranty the conservativeness of the depleted fuel inventory in the criticality calculations of PWR UOx spent assemblies and **get** a conservative and <u>physically realistic</u> value of the k_{eff} :

 \rightarrow use conservative irradiation conditions in depletion calculation ;

→ consider calculation biases on <u>BUC isotopes inventory and individual reactivity worth</u> in criticality studies.

Conservative irradiation conditions – conclusion from early studies

Irradiation parameters	Conservative values		
Fuel temperature	873 K		
Moderator temperature	598 K		
Boron Concentration	600 ppm		
Specific power	40 W/g		
Environment of the UOx assembly	Complete MOx environment (8 assemblies)		
Control rods	Full axial insertion B ₄ C material		
Control rods insertion	Throughout all the irradiation		


Full Burnup Credit conservatisms in PWR-UOx industrial applications,

Determination of an axial burnup profile for PWR-UOx fuel based on the French database of axial burn-up measurements - covering :

Average burnup ranging between 20-50 GWd/t

Full Burnup Credit conservatisms in PWR-UOx industrial applications,

Two set of correction factors

Guaranty the conservativeness of the depleted fuel inventory **Underestimate** absorbing isotopes – **Overestimate** fissile isotopes

1. Isotopic Correction Factors (ICFs)

Applied on the concentrations of the BUC isotopes **Before** the criticality calculation

2. Reactivity worth Correction Factors

Applied on the calculated reactivity worth of the BUC isotopes After the criticality calculation

Specific BUC experimental program

Post Irradiation Experiments for the validation of spent fuel inventory calculation

Oscillations experiments in the MINERVE reactor for the validation of the FPs reactivity worth

Full Burnup Credit conservatisms in PWR-UOx industrial applications,

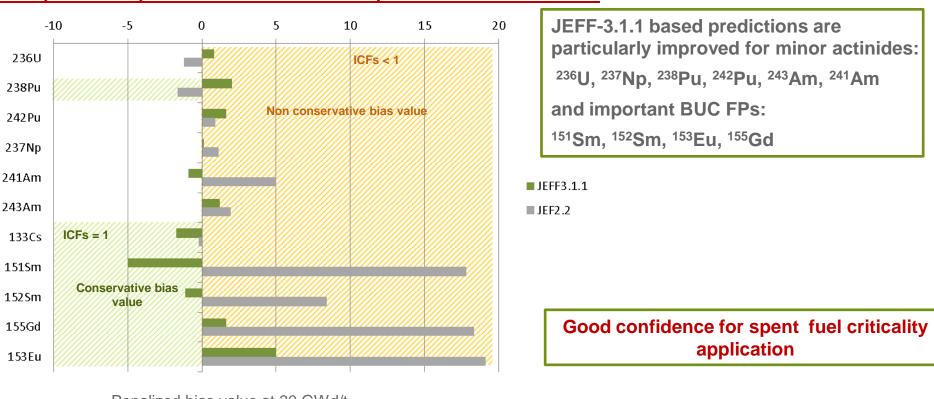
1- Isotopic correction factors:

The estimation of the penalized bias and of the resulting correction factors is based on two components:

- 1- The calculation biases : calculation-experiment comparison (C/E-1)
 - → ICFs derived from the DARWIN2.3/JEFF3.1.1 experimental validation based on a rigorous selection of 22 well characterized samples BU ∈ [15 -60 GWj/t]; Ei ²³⁵U ∈ [3.1 - 4.5%]

2- The experimental uncertainties : the bias is <u>penalized</u> by the one-sided <u>95% confidence</u> <u>interval</u>

Penalized bias for fissile isotopes $\Delta = (C-E)/E - 1.65\sigma^{\prime}$


Penalized bias for absorber isotopes $\Delta = (C-E)/E + 1.65\sigma$

Fissile isotopes are corrected by a factor > 1 Absorbing isotopes are corrected by a factor < 1

Overestimated fissile isotopes and underestimated absorber isotopes are not corrected

BUC methodology – conservative assumptions Correction factors – Isotopic correction factors (3/4)

Comparison of penalized bias values with previous JEF2 evaluation

Penalized bias value at 30 GWd/t (C/E-1) \pm 1.65 σ (%)

Reference

C. RIFFARD, A. SANTAMARINA, J.F THRO, « Correction Factors applied to isotopic concentrations in Burnup Credit of PWR LEU applications with the recent JEFF-3.1.1 / SHEM Library », Proc of Int Conf ICNC, 19 - 22 September 2011, Edinburgh Conference Centre

Full Burnup Credit conservatisms in PWR-UOx industrial applications,

due to the correction and penalty factors derived from the French experiments using the JEFF3.1.1 evaluation"

AREVA

2- Reactivity worth correction factors

Trends due to ND in JEFF-3.1.1 evaluation

The estimation of the penalized bias and of the resulting correction factors is based on two components:

1- The calculation biases : calculation-experiment comparisons (C/E-1) Give by the rigorous interpretation of fission product oscillations experiments

<u>Reference</u> : A. Gruel, P. Leconte, D. Bernard, P. Archier, G. Noguère, "Interpretation of Fission Product Oscillations in the MINERVE reactor, from Thermal to Epithermal Spectra", Nuclear Science & Engineering.

The calculation biases are well quantified and give accurate informations on nuclear data

2- The total uncertainties (measurements and technological)

Full Burnup Credit conservatisms in PWR-UOx industrial applications,

7% ∧keff

✓ 45 GWd/t BU and a 1 year CT

Isotopic Correction Factors Total penalty: 1600 pcm

FPs reactivity worth Correction Factors \Rightarrow 3% \triangle keff

FPs	Impact on the keff in a transport cask (pcm)		
MO95	8		
TC99	46		
RU101	20		
RH103	139		
AG109	11		
CS133	67		
ND143	24		
ND145	17		
SM147	38		
SM149	61		
SM150	5		
SM151	25		
SM152	23		
EU153	0		
GD155	8		
Total penalty	500 pcm		

keff

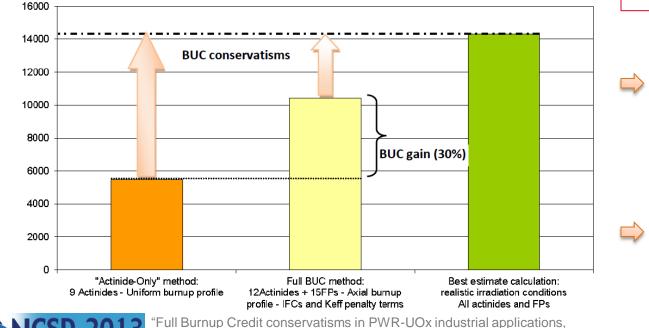
FPs Reactivity worth correction factors

ICFs **≥**

Other assumptions' penalities (Contol Rods, MOx surrounding, bounding BU profile, conservative irradiation parameters)

Slight impact in regards to the other conservatisms

Full Burnup Credit conservatisms in PWR-UOx industrial applications,


Transport cask configuration loaded with 21 irradiated fuel assemblies (4.5%wt) (BUC OCDE benchmark phase II &III)

		BUC [k _{eff} (fresh fuel) - k _{eff} (BUCi)]			
BU	СТ	BUC "Actinide-Only"	Full BUC	Best-estimate BUC	
15 GWd/t	1 year	5300	9900	14000	
	5 years	5500	10400	14300	
45 GWd/t	1 years	17400	22000	35300	
	5 years	18700	24100	37000	
% Best-est	timate BUC	≈40-50%	≈60-70%	100%	

Full BUC approach: 70% of the best-estimate BUC

VS.

40% in the current actinide-only method

Significant reduction of the conservatisms due to more physically and reresentative assumptions

≈30% gain in BUC-margins

Conclusion and prospect

Full BUC approach

✓ Benefit from the improvement of JEFF3.1.1 prediction in all the step of the process and from the good confidence of latest version of the codes (DARWIN2.3 and CRISTAL V2.0)

- ✓ Benefit from the quality and the accurate interpretation of a ten years work specific French BUC program
- ✓ Use of realistic and physically demonstrated hypotheses

Implementation on a transport cask

- ✓ Confirm the interest of its implementation in criticality studies for transport
 - \rightarrow 30% BUC-margins due to more realistic assumptions
- ✓ Highlights the impact of the conservatisms in particular of the corrections factors
 - ightarrow represent only 10% of the full BUC
 - ightarrow integrate the bias linked to the fuel inventory and the biases on the reactivity worth due to ND
 - → contribute to the expansion of the spent fuel inventory composition (minor actinides & FPs)
 - ightarrow constitute one of the key of the methodology quality
- \checkmark The other conservatisms impact could be reduced for specific applications

Prospect

Improve the way to take account of the reactivity worth of BUC nuclides in criticality studies by using the Integrate Experiment Methodology*

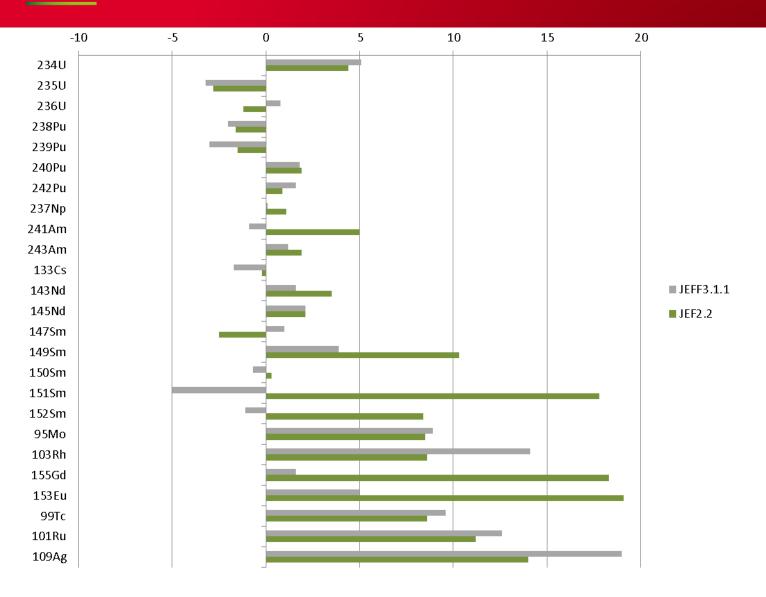
*"Feedback on nuclear data from Burnup Credit Fission Products Oscillations in the MINERVE reactor" A.Chambon & all – Topical session: Method I

"Full Burnup Credit conservatisms in PWR-UOx industrial applications,

THANK YOU FOR YOUR ATTENTION !

"Full Burnup Credit conservatisms in PWR-UOx industrial applications, due to the correction and penalty factors derived from the French experiments using the JEFF3.1.1 evaluation"

PAGE 15


Commissariat à l'énergie atomique et aux énergies alternativesDENCentre de Cadarache | 13108 Saint Paul lez DuranceDERT. +33 (0)4 42 25 31 30 | F. +33 (0)4 42 25 48 49SPRC

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019

DE LA RECHERCHE À L'INDUSTRI

Cea

"Full Burnup Credit conservatisms in PWR-UOx industrial applications, due to the correction and penalty factors derived from the French experiments using the JEFF3.1.1 evaluation"

PAGE 17