Use of Gadolinium as a Primary Criticality Control in UO₂ Fuel Fabrication Process

D. A. Eghbali

ANS Topical Meeting Sep 29 - Oct 3, 2013 Wilmington, North Carolina

- Introduction
- Methodology
- Results and Discussion
- Conclusions

Introduction

Global Nuclear Fuel - Americas (GNF-A) fuel fabrication facility involves in production, processing, handling, and storage of uranium oxides enriched to \leq 5 wt% ²³⁵U.

Wilmington Site - 1650 acres (300 developed)

NCSD 2013 Topical Meeting Wilmington, North Carolina, Sep 29 – Oct 3, 2013

Introduction - Nature of the Fabrication Process

Gad Fabrication Process

 U_nO_m powder + Gd_2O_3 powder \rightarrow pellets \rightarrow Rods

NCSD 2013 Topical Meeting Wilmington, North Carolina, Sep 29 – Oct 3, 2013

Introduction - Nature of the Process

 After Gd₂O₃ addition (2-10 wt.%), the mixture is stored and handled in less than a safe mass in 3-gallon favorable geometry cans.

• Fabrication processes are dry and under moderation control.

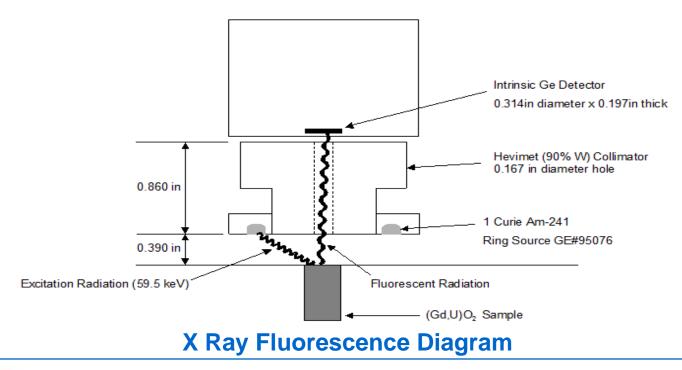
Introduction - Uniform Mixing

Uniform mixing of Gd_2O_3 powder with U_nO_m powder

Vibromill

NCSD 2013 Topical Meeting Wilmington, North Carolina, Sep 29 – Oct 3, 2013

Introduction - Uniform Mixing


Vibromill (media)

NCSD 2013 Topical Meeting Wilmington, North Carolina, Sep 29 – Oct 3, 2013

Introduction - Uniform Mixing

- Multiple samples of $UO_2 + Gd_2O_3$ powder are analyzed for Gd uniformity and content before pellet production.
- Pellet samples are also analyzed at the furnace exit for Gd uniformity and content.

Introduction - Current Safety Basis

- Gad fabrication processing relies on mass, geometry and moderation controls for criticality safety.
- No credit for Gd presence or the nature of the process.
- Nearly 90 IROFS against accidental criticality.
- Maintaining management measures for IROFS is costly.
- Potential for regulatory violations.
 - Powder spill in Gad Slugger Hood (2010)
 - Gad Press Feed Tube Overfill (2011)
 - Gad Press Feed Tube Overfill (2012)

Introduction - Gadolinium as Neutron Poison

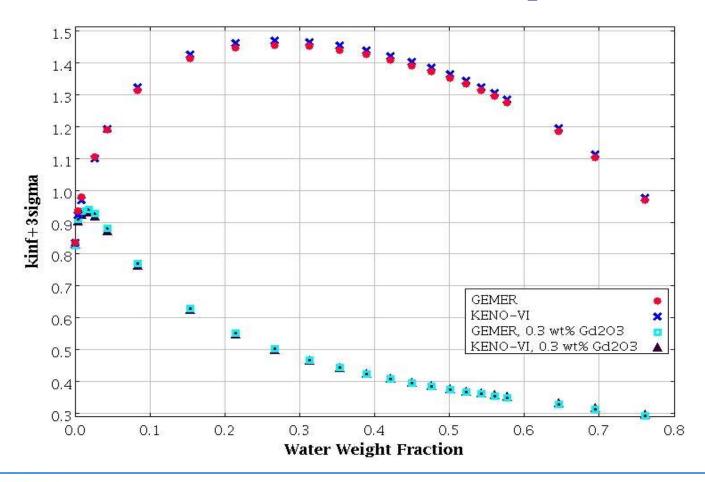
- Small amount of Gd₂O₃ is sufficient to prevent a criticality accident in the event the fuel mixture is accidentally moderated.
- Gd_2O_3 is mixed well with uranium oxide powder.
- Gd₂O₃ does not separate from uranium during the fabrication process.
- Taking credit for Gd₂O₃ can significantly reduce the number of IROFS and regulatory violations.

How much Gd₂O₃ is needed to maintain an infinite system of uranium oxide subcritical under optimum moderation and refection?

- Need to analyze both Homogenous and Heterogeneous systems.
- Homogenous systems: Uranium oxide powder
- Heterogeneous systems: Uranium oxide swarf, pellets, rods.

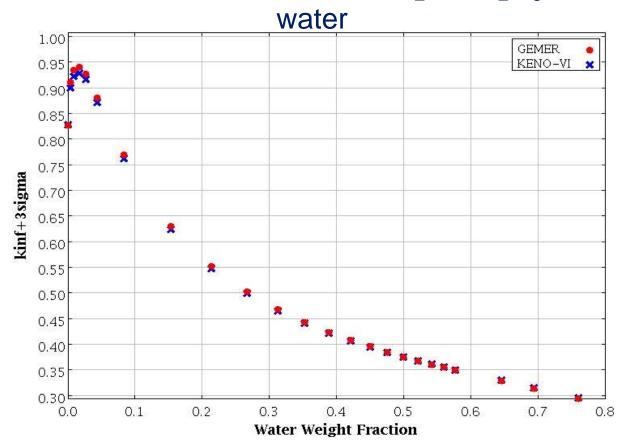
Methodology

- Two Monte Carlo codes, GEMER1.2 and SCALE6.1/ KENO-VI, are used to calculate the minimum amount of Gd₂O₃ required to maintain subcriticality.
- GEMER is a GEH proprietary multi-group Monte Carlo code used at GNF-A. GEMER uses 190-group cross sections from ENDF/B-IV.
- SCALE6.1/KENO-VI has a dodecahedral array option that can be used for modeling of heterogeneous mixtures.
 SCALE uses 238-group/CE cross sections from ENDF/B-VII.0.

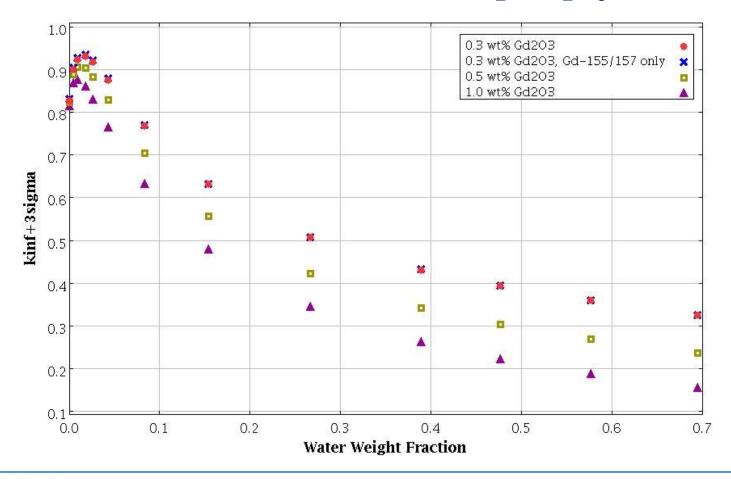


Methodology - Heterogeneous System Modeling

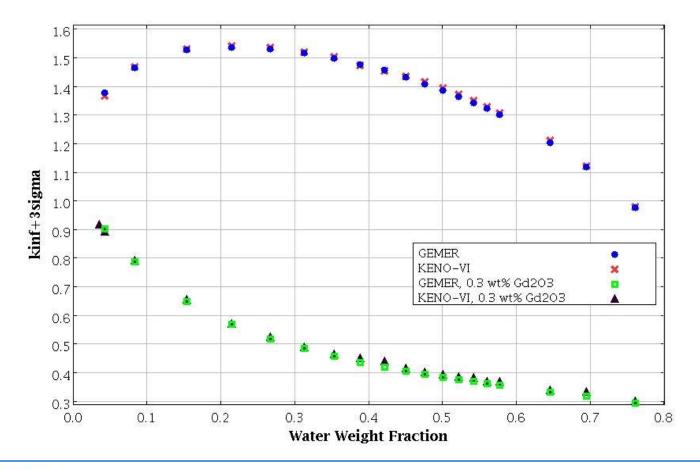
- **GEMER: Virtual Fill Option (VFO)**
 - It allows easy creation of heterogeneous models.
 - Triangular-pitched arrays are easily created using geometry constructs (INTERS, SPINTERS, TRITERS).
 - Results in faster run time.
- SCALE6.1: Dodecahedral array



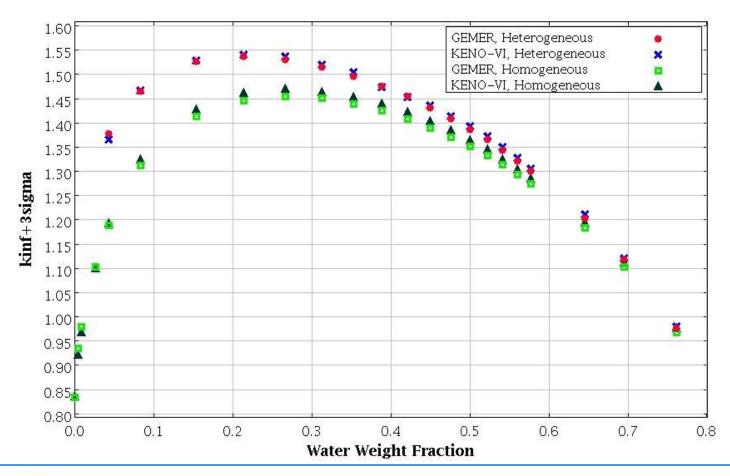
Infinite Homogeneous System of UO₂ and water



Infinite Homogeneous System of $UO_2 + Gd_2O_3(0.3 \text{ wt\%})$ and



Infinite Homogeneous System of UO₂+Gd₂O₃and water



Infinite Heterogeneous System of UO₂ and water

Comparison of Homogeneous & heterogeneous Systems of UO₂ and water

- Gadolinium is an excellent burnable poison that is used for controlling long-term reactivity in thermal reactors.
- Between 2-10 wt% of Gd₂O₃ powder is mixed with the uranium oxide powder to make fuel rods containing gadolinium.
- The majority of rods contain 6 8 wt% Gd_2O_3 .
- The results show that 0.5 wt% Gd₂O₃ is enough to maintain either homogenous or heterogeneous system subcritical.

- Benchmarks used for bias determination ~ 5 wt.% enriched fuel rods moderated by water containing dissolved gadolinium nitrate.
 - THERM-005
 - THERM-028
 - THERM-052
- TSUNAMI-IP used to determine penalty.

Conclusions - Key Controls

Gadolinium can be credited for criticality safety without compromising safety provided the following key controls are in place:

- Gadolinium Quality Control
- Gadolinium Addition and Verification
- Uniform Mixing and Verification
- Verification of Gadolinium Content in Fuel

Conclusions - Key Controls

- The Quality Assurance program requires a set of specifications for Gd₂O₃ powder procurement.
- The procured Gd₂O₃ powder shall be sampled at the site laboratory to verify its isotopic weight percent.
- Augmented administrative controls ensure the correct amount of Gd₂O₃ (2-10 wt%) is mixed with uranium oxide. Calculations show 0.5 wt% Gd₂O₃ is needed for criticality safety.
- Multiple samples of UO₂/Gd₂O₃ mixtures are analyzed using X-Ray Fluorescence Analyzer to verify uniformity and weight percent.

Favorable Factors in Gad Fabrication Process:

- Fuel is stored and handled in less than a safe mass in safe geometry containers.
- Fabrication processes are dry and the area is under moderation control.
- Uranium oxides and Gd_2O_3 are insoluble in water.
- There are no reactions in the fabrication processes that could preferentially separate Gd₂O₃ from uranium oxide.

