Comparison of Validation Results for GEMER, MCNP and SCALE6.1/ KENO-VI

D. Eghbali, Q. Ao, J. Hannah

NCSD 2013 Topical Meeting Sep 29 – Oct 3, 2013 Wilmington, North Carolina

Overview

- Introduction
- Heterogeneous System Modeling
- Statistical Methodology
- Benchmark Selection
- Validation Results
- Conclusions

Introduction

- Global Nuclear Fuel Americas (GNF-A) fuel fabrication facility is involved in production, processing, handling, and storage of uranium oxides enriched to < 5 wt.%
 ²³⁵U.
- Monte Carlo codes are routinely used at GEH/GNF-A for criticality safety calculations.
- Monte Carlo simulation of heterogeneous systems challenges code capability and computation efficiency.
- Validation results of three Monte Carlo codes: GEMER, MCNP and SCALE are compared for homogenous and heterogeneous low enriched uranium (LEU) systems.

Introduction (cont.)

- GEMER 1.2 is a GEH proprietary code and uses190 energy group cross sections from ENDF/B-IV library.
- MCNP-05P is a GEH modified LANL MCNP5 (1.3) code and uses continuous energy cross sections from ENDF/B-VII.0 library.
- SCALE6.1 is an ORNL code and uses both 238 group and continuous energy cross sections from ENDF/B-VII.0 library.

Heterogeneous System Modeling

- Virtual Fill Option (VFO) in GEMER
 - Allows easy creation of heterogeneous models
 - Triangular-pitched arrays are easily created using geometry constructs (INTERS, SPINTERS, TRITERS).
 - Results in faster run time
- Lattice cell in MCNP
- Dodecahedral array in SCALE

USLSA (Upper Subcriticality Limit Statistical Analysis) is a statistical tool developed for criticality safety analysis code validation.

USLSA provides:

- A bias trend for benchmark experiments versus selected parameters by trending analysis, and then interpolates or extrapolates it to applications
- Bias and bias uncertainty for benchmark experiments versus system parameters
- Upper Subcriticality Limit (USL) for an application
- Statistical justification of validity in USL, bias and bias uncertainty

Statistical Methodology

USLSA Flowchart

USL	$USL(x) = \overline{k}e - b(x) - \Delta b - \Delta k_m$	Where, x = independent trending variable
Bias	$b = k_{calc} - k_{exp}$	$K_{e^{-}}$ weighted mean of all k_{exp} values b(x) = regression fit of bias $\Delta b = bias uncertainty$ $\Delta k_{m} = minimum margin of subcriticality$
WLS Regression	$Min: Q = \sum_{i=1}^{n} \frac{1}{\sigma_i^2} [k_{calc,i} - k_{calc}(\beta; x_i)]^2$	(MMS) k_{calc} = calculated k_{eff} value of benchmark experiment k_{exp} = experimental k_{eff} value of
Statistical Tests	$\begin{array}{l} \hline Regression Tests (residual assumptions):\\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	benchmark $k_{calc}(\beta; x) = regression fit of calculated k_{eff} values of benchmark experiments \beta = regression model parameters\sigma_i = overall uncertainty:\sigma_i = \sqrt{\sigma_{exp,i}^2 + \sigma_{calc,i}^2}\sigma_{calc} = calculational uncertainty\sigma_{exp} = experimental uncertainty$

Statistical Methodology - Bias Uncertainty Estimation

Method	Bias Uncertainty	Notation	Applicability
SSLPB Single-Sided Lower Prediction Band	$\Delta b = \max[t_{1-\alpha,\nu}s_p\sqrt{1+L(x)'S^{-1}L(x)}]$ $L(x) = \text{coefficient partial derivative vector evaluated at } x$ $S = \text{design matrix}$	$s_{p}^{2} = s_{f}^{2} + s_{c}^{2}$ $s_{f}^{2} = \frac{1}{n-m} \sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} [k_{i} - k_{c}(x_{i})]^{2}$ $s_{c}^{2} = \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2}$	Trend with high goodness- of-fit explained by physics
SSLTB Single-Sided Lower Tolerance Band	$\Delta b = C_{(1-\alpha)/P} \cdot s_{p}$ Tolerance factor, $C_{(1-\alpha)/P} = max \left\{ \frac{\overline{k}_{i} - z_{P,i}}{s_{i}} \right\}_{i=1,n}$ estimated by Monte Carlo	t _{1-α,v} = 100(1- α)% of inverse of central t cdf with V degrees of freedom t' _{1-α,v} ($\overline{\delta}$) = 100(1- α)% of the inverse of noncentral t cdf with noncentrality parameters $\overline{\delta}$ and V degrees of freedom	Trend with any type of linear/nonlinear regression model for normal/non- normal data
SSLTL Single-Sided Lower Tolerance Limit	$\Delta b = \frac{1}{\sqrt{n}} t'_{1-\alpha,n-1} (z_{P} \cdot \sqrt{n}) \cdot s_{p}$	z _p = 100P% of the inverse of standard normal cdf	Non-trend and normal data

HITACHI

NCSD 2013 Topical Meeting Wilmington, North Carolina, Sep 29 – Oct 3, 2013

Benchmark Experiment Parameters

Parameters	Homogeneous	Heterogeneous	
Material	Uranium	Uranium	
Chemical Form	UF_4 , UO_2 , UO_2F_2 , $UO_2(NO_3)_2$	UO_2	
Enrichment (wt% 235U)	2-10	2-5	
Physical Form	Solution, Solid	Solid	
Moderator (in fuel region)	H ₂ O, Paraffin,	H_2O	
Physical Form	Solution, Solid	Solution	
Moderation Ratio (H/235U)	16 -1438	50 - 450	
Reflector (in fuel region)	Bare, H ₂ O, Paraffin, Polyethylene	H_2O	
Physical Form	Solution, Solid	Solution	
Absorber (in fuel region)	None	None	
Neutron Energy Spectrum	Thermal	Thermal	
Number of Experiments	7	12	
Number of Configurations	49	48	

HITACHI

Homogenous System Benchmarks - 49 LEU compound experiments

Benchmark	Form	Wt% ²³⁵ U	H/235U	Reflector/Geometry	Description
LCT33 (14)	UF4	2 - 3	133 - 973	Paraffin/Polyethylene - reflected & unreflected cuboids	Solid blocks of UF₄ dispersed in paraffin moderator
ICT01 (6)	UF ₄ -CF ₂	29.83	16 - 64	Plexiglas - reflected cuboids	Stacked arrays of 1"x1"x1" UF4-CF2 and polyethylene blocks
LCT45 (7)	U_3O_8	4.46	38 - 98	Concrete and Plexiglas - reflected cuboids	Large U3O8 powder systems with low moderation content
LCT49 (4)	UO ₂	5	40 - 60	Polyethylene - reflected array of cuboids	Large UO ₂ powder systems with low moderation content
LST02 (2)	UO_2F_2	4.9	1001 - 1098	Unreflected and water reflected spheres	174 L sphere containing UO ₂ F ₂ Solution
LST03 (9)	UNH	10.07	770 - 1438	Unreflected Spheres	Full and truncated spheres containing uanyl nitrate solution
LST04 (7)	UNH	9.97	719 - 1018	Water reflected cylinders	Cylindrical 60 cm diameter tank containing uranyl nitrate solution

Heterogeneous System Benchmarks - 48 LEU compound experiments

Benchmark	Form	Wt% ²³⁵ U	H/235U	Reflector/Geometry	Description
LCT09 (3)	UO_2	4.306	257	Water reflected array of fuel rods	Square lattice of water moderated fuel rods
ICT10 (3)	UO_2	4.306	107 - 257	Depleted Uranium or steel reflected array of fuel rods	Square lattices of water moderated fuel rods
LCT16 (2)	UO_2	2.35	399	Water reflected array of fuel rods	Square lattices of water moderated fuel rods
LCT17 (4)	UO_2	2.35	219 - 399	Lead, depleted uranium or steel - reflected array of fuel rods	Square lattices of water moderated fuel rods
LCT18 (1)	UO_2	7	118	Water reflected array of fuel rods	Square lattices of water moderated fuel rods
LCT19 (3)	UO_2	5	103 - 162	Water reflected array of fuel rods	Hexagonal lattices of water moderated fuel rods
LCT20 (7)	UO_2	5	451	Water reflected array of fuel rods	Hexagonal lattices of water moderated fuel rods
LCT22 (7)	UO_2	9.83	50 - 6 29	Water reflected array of fuel rods	Hexagonal lattices of water moderated fuel rods
LCT23 (6)	UO_2	9.83	340	Water reflected array of fuel rods	Hexagonal lattices of water moderated fuel rods
LCT24 (2)	UO_2	9.83	41 - 105	Water reflected array of fuel rods	Square or hexagonal lattices of water moderated fuel rods
LCT25 (4)	UO ₂	7.41	72 - 355	Water reflected array of fuel rods	Hexagonal lattices of water moderated fuel rods
LCT26 (6)	UO ₂	4.92	43 - 107	Water reflected array of fuel rods	Hexagonal lattices of water moderated fuel rods

HITACHI

Validation Results - Homogenous Systems

NCSD 2013 Topical Meeting Wilmington, North Carolina, Sep 29 - Oct 3, 2013

Validation Results - Heterogeneous Systems

NCSD 2013 Topical Meeting Wilmington, North Carolina, Sep 29 – Oct 3, 2013

Code	Homogeneity	USL Method	USL (H/235U)
GEMER		SSLTB	0.9582-3.3201E-5X+5.1004E-8X ² - 2.2784E-11X ³
MCNP		SSLTL	0.9614
SCALE6.1-KENO-VI	Homogeneous	SSLTB (238-group)	0.9567 for X<=1175
			0.9632-5.5873E-6X for X>11.75
		SSLTL (CE)	0.9571
GEMER		SSLTL	0.9524
MCNP	Heterogeneous	SSLTL	0.9569
SCALE6.1-KENO-VI		SSLTB (238-group)	0.9554
		SSLTB (CE)	0.9565

NCSD 2013 Topical Meeting Wilmington, North Carolina, Sep 29 – Oct 3, 2013

Conclusions

- Validation results for GEMER1.2, MCNP-05P and SCALE6.1-KENO-VI agree well for the systems evaluated.
- GEMER calculated k_{eff} values are generally lower than those calculated by MCNP or SCALE6.1-KENO-VI.

NCSD 2013 Topical Meeting Wilmington, North Carolina, Sep 29 – Oct 3, 2013

