
Effects of Particle Size and Density on Reactivity Low Enriched UO₂ Systems

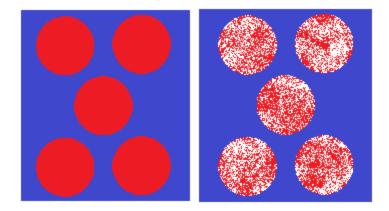
Libby Dunn NCSD 2013

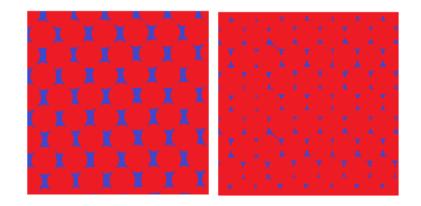
Background

Heterogeneous Systems - Particle Density Effect

- Particles ~ 1000 µm and 4.5 g/cc modeled as homogeneous at GNF-A
- Particles > 127 µm are heterogeneous (TID-7016)
- Non-conservative?

Homogeneous Systems - Bulk Density Effect


- Optimal Reactivity occurs at ~ 50 wt.% H₂O for a fixed mass of LEU.
- Is it credible that we can get 50 wt.% H₂O?
- Too conservative?



Introduction

Goal

To determine the effect of particle size and density on reactivity for low enriched UO₂ - H₂O systems

Particle Density Heterogeneous Systems

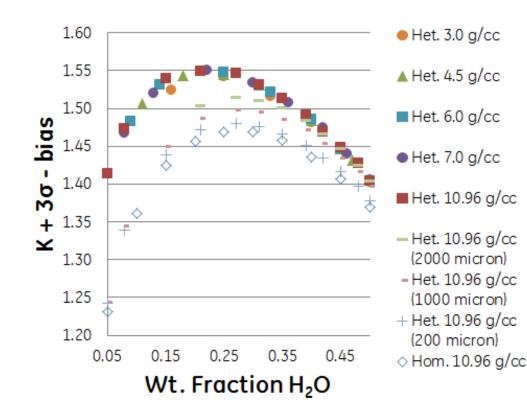
Bulk Density Homogeneous Systems

GEH/GNF Proprietary Information – Class 1 (Public)

Heterogeneous Systems The effect of particle size and density

Optimum Particle Size

$$Wt.Fraction H_2 O = \frac{W/F}{\frac{W}{F} + \rho_{fuel}}$$


W/F	Optimum Particle Diameter (µm)	10.96 g/cc fuel Wt. Fraction H ₂ O	4.5 g/cc fuel Wt. Fraction H ₂ O
0.577	70,000	0.05	0.11
1	30,000	0.08	0.18
2	14,000	0.15	0.31
3	8,000	0.21	0.40
4	7,000	0.27	0.47
5	5,000	0.31	0.53
6	4,000	0.35	0.57
7	3,000	0.39	0.61
8	2,500	0.42	0.64
9	2,500	0.45	0.67
10	2,500	0.48	0.69
11	2,000	0.50	0.71

Ref. "Optimum UO₂ Particle Size Determination," J. DeGolyer, and D. Eghbali, ANS June 2011

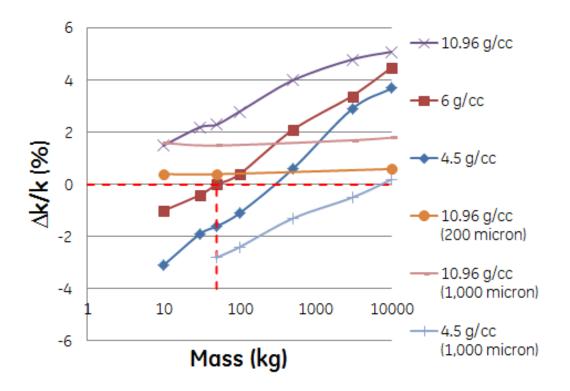
A Joint Venture of GE, Toshiba, & Hitachi

Infinite System

$$\frac{\Delta k}{k} = \frac{k_{het} - k_{hom}}{k_{hom}}$$

Optimum H₂O

Particle Diameter	∆ k/k
(µm)	(%)
Optimum	5
2,000	3.0
1,000	1.8
200	0.6


5 wt.% H₂O

Particle Diameter	∆ k/k
(µm)	(%)
Optimum (2.75")	15
12,700 (0.5")	6
1,000	0.8

Heterogeneous effect is independent of density for infinite systems.

Mass Limited System

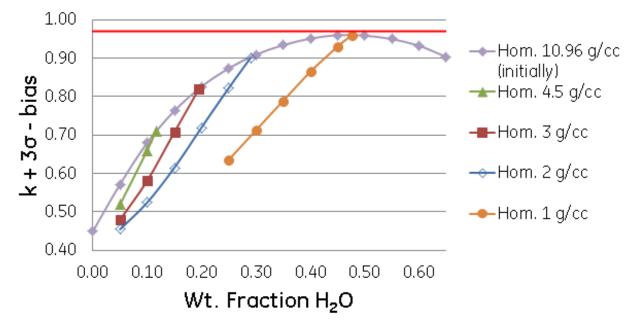
$$\frac{\Delta k}{k} = \frac{k_{het} - k_{hom}}{k_{hom}}$$

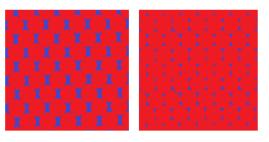
For 1,000 μ m particles \leq 4.5 g/cc, homogeneous is bounding up to 10,000 kg.

For 1,000 µm particles = 10.96 g/cc, heterogeneous effect is independent of mass.

Particle Density is important because leakage is important!

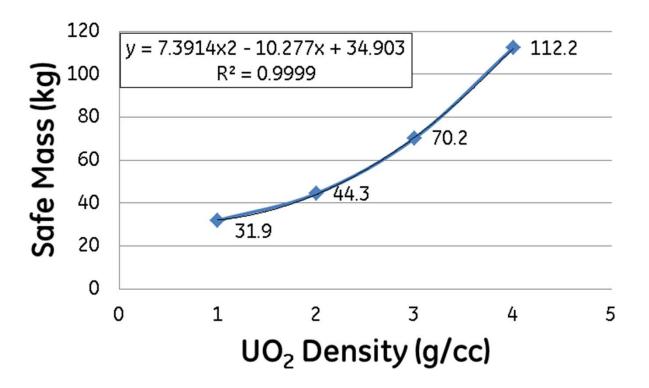
Geometry Limited System


Heterogeneous effect is density and geometry dependent for geometry limited systems.


Homogeneous Systems The effect of bulk density

Mass Limited System

Homogeneous 31 kg UO₂ Sphere


density (g/cc)	saturation wt. % H ₂ O
1	47.6
2	29.0
3	19.5
4.5	11.6
10.96	0.0

High density powder has less void space for water to occupy.

Density Dependent Safe Mass Limits

Higher safe mass limits can be developed for systems of a known density if agitation is not credible.

Conclusion

Effect of Particle Size and Density on Heterogeneous Systems

Infinite

- No density effect
- Large particle size effect

Mass and Geometry Limited

- Homogeneous bounds heterogeneous (≤ 6 g/cc) for systems with a high leakage component (≤ 50 kg, 119 L)
- 1,000 μ m particles \leq 4.5 g/cc are effectively homogeneous

Effect of Bulk Density on Homogeneous Systems

• Higher safe mass limits can be developed for systems of a known density if agitation is not credible.

