Methodology to Assess Minimum Accident of Concern and Criticality Accident Alarm System Location

Ruxandra Dranga and Jingjing Wang

ANS NCSD 2013 – Criticality Safety in the Modern Era: Raising the Bar Wilmington, North Carolina 2013 Sept 29 – Oct 3

Outline

- Motivation
- Minimum Accident of Concern (MAC) Definition
- General Description
- Methodology Implementation Example
- Concluding Remarks

Motivation

- Canadian Nuclear Safety Commission (CNSC) Regulatory and Guidance Documents on Nuclear Criticality Safety (RD-327 and GD-327) requirements:
 - Define the minimum criticality accident of concern
 - Identify possible criticality accident alarm system detector locations
 - Evaluate which detector locations are appropriate to detect the minimum accident of concern
- CRL's new approach complies with newly updated regulations

Minimum Accident of Concern (MAC) Definition

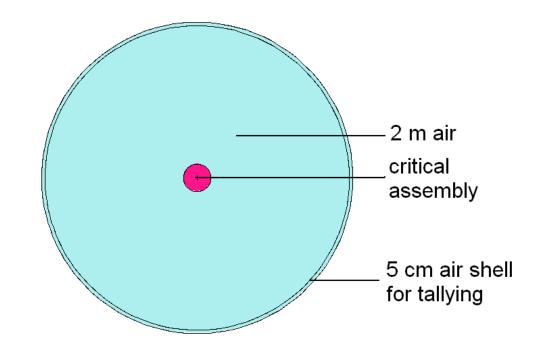
- As per CNSC RD-327, the MAC is defined as:
 - "... the accident resulting in a dose to free air of 0.20Gy (20 rad) in the first minute, at a distance of 2 meter from the reacting material."

(consistent with ANSI/ANS 8.3)

Notes:

 if significant shielding was present around the accident, the MAC will account for the additional shielding

Methodology


- Step 1: Define the Minimum Accident of Concern
- Step 2: Assess detector dose rate at each location

General Description

- Computer code used: MCNP5, version 1.40
 - Neutron and photon coupled mode (i.e., MODE N P) was used for all calculations
 - Criticality accident modeled as a criticality source using the KCODE card
 - Critical systems were defined such that the calculated k_{eff} was between 0.997 and 1.000
 - KCODE calculation was run until the tally results had < 1% relative uncertainty
 - The energy deposited in air was calculated using the F6 tally, which calculates the energy deposited, in
 MeV / g / source particle, averaged over a tallied volume

- 1 a) Identify the **type(s) of fissile materials** and postulate the **conceivable sequence of events** which would result in an inadvertent critical assembly
- 1 b) Perform a parametric study to estimate:
 - The minimum critical mass MCM for MAC
 - The optimal conditions (i.e., optimal light-water moderation, most conservative geometry given available, engineering controls, etc.)

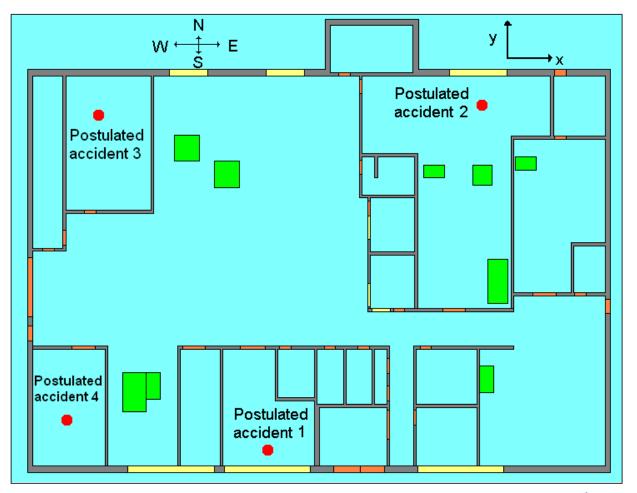
- 1 c) Model the postulated accident in MCNP to calculate the energy deposited in a 5 cm shell of air, located at 2 m away from the critical assembly
 - The energy deposited includes both energy deposited by neutrons and gammas

1 d) Calculate the total fission rate for each postulated accident:

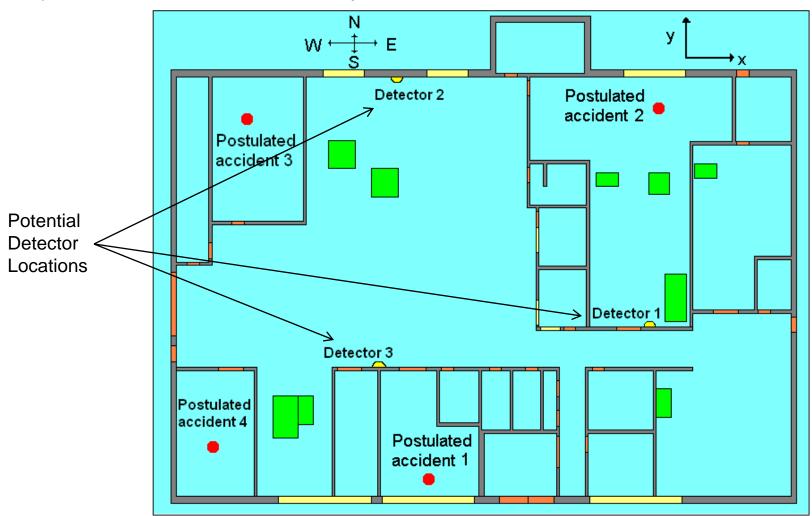
$$\operatorname{fission\ rate}\left(\frac{\#\ fissions}{\min}\right) = \frac{0.2\frac{\operatorname{Gy}}{\min}}{\operatorname{Energy\ deposited}\left(\frac{\operatorname{MeV}}{\operatorname{g}}\right) \times \bar{\upsilon}\left(\frac{\operatorname{neutrons}}{\operatorname{fission}}\right)}$$

Energy deposited = the MCNP results obtained using the F6 tally, reported in MeV / g / source neutron

 $\stackrel{-}{\upsilon}$ = the average number of neutrons produced per fission, calculated using MCNP


1 e) Identify the MAC as the accident resulting in the lowest fission yield

Postulated Accident Description	Estimated Fission Yield (# fissions / min)
Bare sphere, homogeneous HEU - water mixture	5.2 × 10 ¹⁵
Reflected sphere, homogeneous HEU – water mixture	1.4 × 10 ¹⁶


2 a) Create a computer model of the nuclear facility

2 b) Identify the potential locations for the MAC defined in Step 1

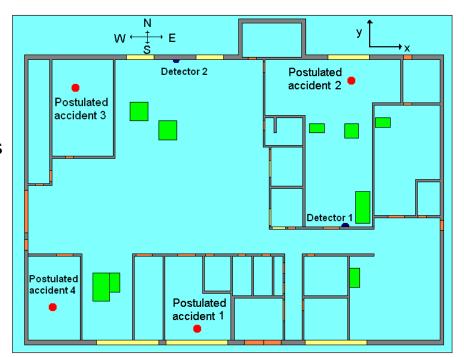
2 c) Select the location of potential detectors.

2 d) Calculate neutron and gamma doses for each detector location:

$$\text{Dose rate } \left(\frac{Gy}{h}\right) = \text{Energy deposited} \left(\frac{\frac{MeV}{g}}{neutron}\right) \times \bar{\upsilon}\left(\frac{neutron}{fission}\right) \times \text{MAC fission rate } \left(\frac{\# \ fissions}{min}\right)$$

dose rate = calculated neutron or gamma dose rate at the detector

location


Energy deposited = the MCNP results obtained using the F6 tally, in MeV/g/source

neutron

MAC fission rate = the term calculated in Step 1 d)

 υ = the average number of neutrons produced per fission

- 2 e) Compare dose rate to detector trip point and establish which identified locations provide sufficient coverage for the MAC
 - Analysis showed that detector locations
 1 and 2 were sufficient to provide
 coverage for the four MAC locations
 - Calculated gamma doses were bounding; hence, using gamma CAAS detectors was appropriate
 - ➤ Implementing at least a 2-out-of-3 logic at each detector location is recommended to reduce the rate of false alarms

Concluding Remarks

- First step in complying with CNSC regulatory requirements for criticality accident alarm system and in establishing the system parameters and design requirements
- Implemented a step-by-step process to establish the minimum accident of concern and identify criticality accident alarm detector location, type and number
- The results provide the basis for the acquisition, installation and/or upgrade of criticality accident alarm systems in facilities where a criticality accident may lead to an excessive radiation dose

Acknowledgements

The authors gratefully acknowledge the help and assistance provided by fellow staff at AECL, including Fred Adams, John Allen, Laura Blomeley, Lloyd Dunn, Darren Radford, Bruce Wilkin, and Ross Webster.

A AECL EACL