

Business from technology

Criticality Safety Calculation Package for Fuel Transport and Storage Systems

NCSD 2013 - Wilmington Karin Rantamäki VTT Technical Research Centre of Finland

Motivation

- Criticality safety assessments require sensitivity analyses
 - Large number of separate calculations with only small modifications
 - Tedious work if performed manually
- Possibility to reduce manual work
 - Saves time (releases time for other duties)
 - Reduces risk of human errors
- A need to document the work and transfer knowledge to next generation
 - No new storage systems in near future
 - Calculations for Loviisa NPP not done very often

Collect the calculations for various transport and storage systems into a calculation package

Outline

- Data transfer and analysis program
- Pool models for storage and transport systems
- Demonstrate the use of package
 - Effect of moderator density on k_{eff} of single assembly
 - Design of spent fuel storage rack
- Summary and future work

Definitions

- Pool = storage or transport system
 - Transfer cask, spent fuel pool, etc.
- Pool model = a skeletal MCNP input for the pool
 - Template for actual MCNP input
 - Contains "keywords" replaced by an appropriate number before actual MCNP calculation

Input of the package

- Defines pool to be calculated
 - Chosen from pool library
- Gives parameters to be varied and their values
 - First value always nominal case
 - Additional values variations
- Several parameters may be given to be varied
 - Variations done for a single parameter at a time
 - All other nominal values
- Default parameter file and cross section library

```
# VVER assembly with water density varied
# Pool to be calculated
POOL asse2.in
DEFPAR defaults.in
# XSDIR /home/projle/xsdata/sss_jeff311u.xsdir
```

kcode data: number of neutrons, skipped # cycles and total number of cycles KCODE 50000 300 1000

```
# Fuel enrichment and U234 portion of U235
ENRI 4.4
F40SUUS 0
```

```
# Assembly pitch, water layer outside shroud
# tube, moderator density
NPITCH 22.5
OUTEDGE 0.01
MODDENS -0.9591 -0.0 -0.2 -0.4 -0.6 -0.8 -1.0
```


Data Transfer and Analysis Program

- Built around MCNP
- Written in Perl
- Prepares MCNP inputs from pool models
- Performs the MCNP runs
- Makes a few crude tests
 - User needs to verify e.g. convergence
- Collects the data into a report
 - pdfLaTeX

Pool Models

- Skeletal inputs for MCNP
- Contain all details for the pools
- Keywords for parameters to be varied
 - Replaced by actual value given in input
- Keywords cover
 - All geometry parameters
 - All material densities
 - Uranium enrichment => fuel
 - B concentration of boron steel
 - Water content of wood

Pool	Model			
Fuel assembly	asse2.in	Movable, reflecting boundary		
Fuel pool	pool0.in	No positions plugged		
	poolX3m.in	Modified X3 plugging of positions		
	poolX4.in	X4 plugging of positions		
Spent fuel storage rack	kpa.in	Boron steel plates		
	kpa2.in	Boron steel casing		
Fresh fuel transfer cask	fresh5x5.in	5x5 containers, 2N for accident conditions		
	fresh8x8.in	8x8 containers, 5N for normal conditions		
Transfer basket	bask.in			
Shipping cask	trans.in			
Transfer cask	cask.in			
Final disposal canister	kapseli.in			

Demonstration of the use of package

- Effect of moderator density on k_{eff} of single assembly
- Design of spent fuel storage rack

Moderator density effect

- Single VVER-440 assembly
 - Storage position, infinite lattice
 - Reflecting boundaries
 - 4.4 % enriched uranium
- Water density varied from 0 to 1
 - Nominal value 0.9591 g/cm³
- These 11 runs took about 13 h of wall clock time on an 8 node Linux cluster
 - No manual interference needed

Design of spent fuel storage rack

- Rack made of boron doped stainless steel
- Reflecting boundary conditions
 - 30 cm water below and above fuel

Results for spent fuel rack

- Task was to
 - 1. Find boron content for fixed wall thickness
 - 2. Find wall thickness for given boron contents
- Reference value from older rack (recalculated with current model)

# Laskettava allas								
POOL kpa2.in								
DEFPAR defaults.in								
KCODE 50000 300 1000								
LWTR lwtr.12t								
<pre># Boron content, wall thickness [cm]</pre>								
BCONS 0 0.2 0.4 0.6 0.8 0.9 1.0 1.1 1.2 1.4 1.6 1.8 2.0								
STWALL 0.3								

Report by package

- Name of the analysed pool
- Name of user and date of calculations
- Computer and platform
- Directories for back tracing
 - Input
 - Run directory
 - Cross section directory
- Tables with data
 - Nominal values
 - Cross section data
 - Results

	Table 3: Resul	its of critic	ality calcu	ilations.	d in this more	
Case	Description	$k_{\rm eff}$	$\frac{\rm Std~dev}{\sigma}$	$\frac{\Delta k_{\text{eff}}}{[\text{pcm}]}$	Interpolated	Comment
0	Nominal case	1.00492	0.00011			
1	Start of fuel 0 (-6)	1.00464	0.00011	-28		
2	Moderator density -0.0 (-0.9591)	0.44467	0.00005	-56025		
3	Moderator density -0.1 (-0.9591)	1.21634	0.00012	21142		
4	Moderator density -0.2 (-0.9591)	1.36481	0.00010	35989		
5	Moderator density -0.3 (-0.9591)	1.37046	0.00010	36554		
6	Moderator density -0.4 (-0.9591)	1.32550	0.00009	32058		
7	Moderator density -0.5 (-0.9591)	1.26142	0.00009	25650		
8	Moderator density -0.6 (-0.9591)	1.19331	0.00010	18839		
9	Moderator density -0.7 (-0.9591)	1.12947	0.00010	12455		
10	Moderator density -0.8 (-0.9591)	1.07386	0.00011	6894		
11	Moderator density -0.9 (-0.9591)	1.02771	0.00011	2279		
12	Moderator density -1.0 (-0.9591)	0.99129	0.00011	-1363		
	Wall thickness of intrumentation	tube 0.0	65			
	Inner radius of shroud tube	7.06 0.15 0.61 50000 300 700				
	Wall thickness of shroud tube					
	Rod pitch					
	Number of neutrons					
	Number of skipped cycles					
	Number of active cycles					

Summary and development

- A calculation package facilitating sensitivity studies and reducing manual work has been set up
 - Built around MCNP
 - Consists of code preparing inputs for and running MCNP, and set of pool models
- Already proven useful in design work
- Further development
 - Plots of source entropy in report helps checking of convergence
 - Plots of results in the report
 - Variation of other material compositions
 - Linking to a burnup code

VTT creates business from technology

