The Use of Density-Law-Invariant Parameters For Criticality Safety Assessment

Presented to ANS NCSD 2013 September 29-October 3, 2013

Song T. Huang and Philip Chou

LLNL-PRES-644032

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Contents of This Presentation

- Introduction
- Review of the Density Law
- Example 1- Use of Non-leakage Fraction
- Example 2- Use of Number of Neutron Mean Free Paths
- Concluding Remarks

Introduction

- Purpose : to assist the end users
- Complexity of Neutron Transport
- Many ways of characterizing a neutron system
- Not all parameters are of the same usefulness in providing physics insights
- Geometry versus Material
- Density-Law-Invariant Parameters

W. R. Stratton on The Density Law

"This is the density law in criticality physics which simultaneously exact, simple, and useful. In a critical system, if the densities are increased everywhere to x times their initial value and all the linear dimensions are reduced 1/x times their value, the system will remain critical"

Ref: LA-3612, "Criticality Data and Factors Affecting Criticality of Single Homogeneous Unit", Sept, 1967

H. Paxton on the Density Law

 "Criticality dimensions are inversely proportional to the density, provided the density changes are uniform"

Ref: H. Paxton, "Criticality Control in Operations with Fissile Material", LA-3366(rev), January, 1972

Lawrence Livermore National Laboratory

Review of the Density Law

- Actually, under the density law transformation, not only the new system remains to be critical, the neutron physics remains the same.
- We know the following:
- 1) Neutron diffusion equation stays invariance under the density law transformation
- 2) Neutron transport equation stays invariance under the density law transformation

Invariance of Diffusion Theory under The Density Law Transformation

• System I:
$$\frac{d^2\phi}{dx_1^2} + B_1^2\phi = 0$$
 $N_i \quad \sigma_{ai} \quad etc$

• System II:
$$\frac{d^2 \phi}{dx_2^2} + B_2^2 \phi = 0$$
 $N_i' \sigma_{ai}' etc$

- Relation between System I & System II
 - 1. Spatial parameters
 - 2. The densities
 - 3. The material buckling
 - 4. The diffusion equations

7

Invariance of Diffusion Theory under The Density Law Transformation

The spatial parameters

$$x_2 = (g)x_1, \quad dx_2 = (g)dx_1, \quad \frac{d\phi}{dx_2} = \frac{1}{g}\frac{d\phi}{dx_1}, \quad \frac{d^2\phi}{dx_2^2} = \frac{1}{g^2}\frac{d^2\phi}{dx_1^2}$$

The material buckling parameters

$$:: N_{i}' = \frac{1}{g} N_{i}, \qquad \forall i,$$

$$B_{2}^{2} = \frac{\sum_{i} \left(v_{i}' \Sigma_{fi}' - \Sigma_{ai}' \right)}{D'} = \frac{\sum_{i} N_{i}' \left(v_{i}' \sigma_{fi}' - \sigma_{ai}' \right)}{\frac{1}{3} \sum_{i} \frac{1}{N_{i}' \left(\sigma_{i}' - \mu_{0}' \sigma_{s}' \right)}} = \frac{\frac{1}{g} \sum_{i} N_{i} \left(v_{i}' \sigma_{fi}' - \sigma_{ai}' \right)}{\frac{g}{3} \sum_{i} \frac{1}{N_{i} \left(\sigma_{i}' - \mu_{0}' \sigma_{s}' \right)}} = \frac{1}{g^{2}} \cdot B_{1}^{2}$$

Lawrence Livermore National Laboratory

Invariance of Diffusion Theory under The Density Law Transformation

 The Diffusion Equations are the same with same boundary condition

$$\frac{d^2\phi}{dx_2^2} + B_2^2\phi = 0 \quad \to \frac{1}{g^2}\frac{d^2\phi}{dx_1^2} + \frac{1}{g^2}B_1^2\phi = 0 \quad \to \frac{d^2\phi}{dx_1^2} + B_1^2\phi = 0$$

 Similarly, The transport equation is invariant under the density law transformation

Examples of The Density-Law-Invariant Parameters

- The number of the neutron mean free paths
- The surface mass density
- The non-leakage fraction or the leakage fraction
- The normalized system k-eff/k-inf
- The average escape probability

Example 1- Use of Non-leakage Fraction or Leakage Fraction

- For example, it is customary to represent the neutron reproduction factor as follows:
 - $k_{eff} = k_{inf}^{*}$ (Nonleakage Fraction)

 $= k_{inf} / (1 + M^2 B^2)$

where

- M² is the migration area
- B² is the geometric buckling

M²B² is conserved under the density law transformation. So is the non-leakage fraction or leakage fraction

Example 1- Use of Non-leakage Fraction or Leakage Fraction (Continued)

•
$$M^2B^2 = k_{inf} - 1$$

•
$$M^2B^2 < k_{inf} - 1$$

•
$$M^2B^2 > k_{inf} - 1$$

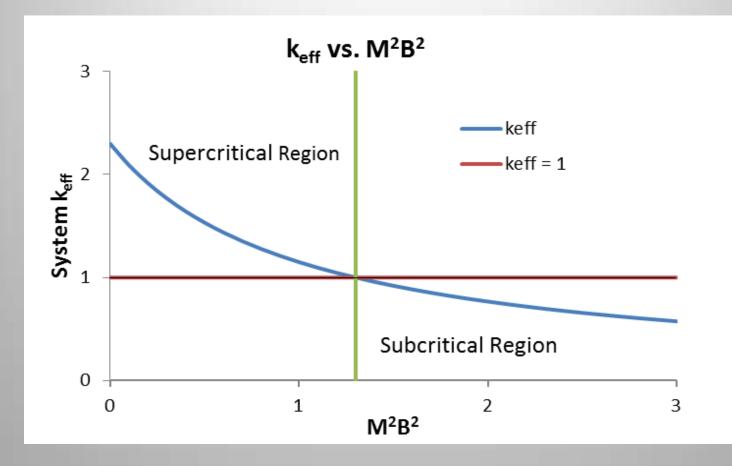
 \rightarrow \rightarrow

 \rightarrow

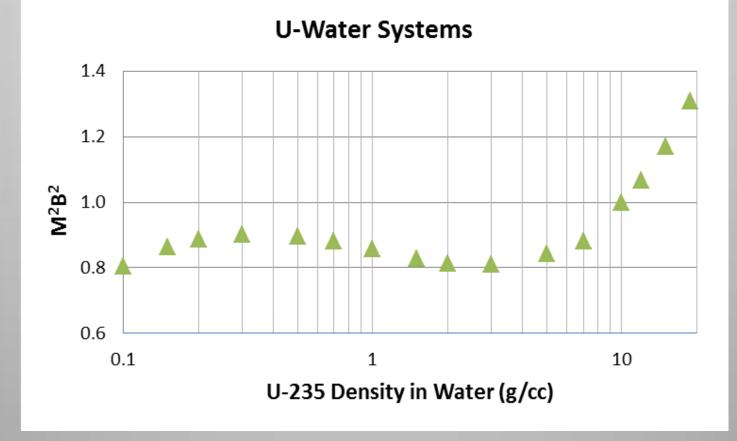
Critical

- Supercritical
- Subcritical

Example 1- Use of Non-leakage Fraction or Leakage Fraction (Continued)



Example 1- Use of Non-leakage Fraction or Leakage Fraction (Continued)



Lawrence Livermore National Laboratory

LLNL-PRES-644032

Example 2- Use of Number of Neutron Mean Free Paths

 For example, the average escape probability P₀ for the sphere with radius a and the mean free path length I is, per the Dirac chord method,

$$P_0 = \left(\frac{3}{8 \cdot \left(\frac{a}{l}\right)^3}\right) \cdot \left(2 \cdot \left(\frac{a}{l}\right)^2 - 1 + \left(1 + \frac{2a}{l}\right) \cdot e^{-\frac{2a}{l}}\right)$$

- Both the number of the mean free paths and the average escape probability P_0 are conserved under the density law transformation.

LLNL-PRES-644032

Example 2- Use of Number of Neutron Mean Free Paths (Continued)

a/l (no. of mfp)	1	2	3	4	5
P ₀ (Average escape Probability)	0.52	0.33	0.23	0.18	0.15

Concluding Remarks

- The density law offers a few physics insights to the neutron transport process.
- The use of parameters which are invariant under the density laws offers an interesting way of looking at criticality safety issues.
- An end user may want to include some of the density-law-invariant parameters as tools in the tool box for criticality safety assessment.