Criticality Safety Validation of SCALE 6.2 Beta 1 With ENDF/B-VII.0 Libraries

W.J. Marshall, D. Wiarda, C. Celik, B.T. Rearden, and D.R. Wentz

AGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

Outline

- 1. Introduction
- 2. VALID procedure and library contents
- 3. Validation methods
- 4. Results
- 5. Conclusions
- 6. Future work

Introduction

- Through the support of the DOE Nuclear Criticality Safety Program, the performance of SCALE 6.1 was assessed for hundreds of critical benchmarks
 - Intended as a demonstration of SCALE performance across a wide range of systems
- Benchmarks are all from IHECSBE and included in the VALID library maintained at ORNL
 - Several cases have added since the SCALE 6.1 validation report
- This effort has been repeated for SCALE 6.2 Beta 1
- Models are executed using 238-group, 252-group, and continuous energy libraries based on ENDF/B-VII.0

VALID procedure and library contents

- <u>Verified</u>, <u>Archived</u> <u>Library</u> of <u>Inputs</u> and <u>Data</u> procedure is a SCALE project computational procedure at ORNL
- Similar to 10CFR50 Appendix B QA program:
 - Independent preparation and review of models and documentation
 - Individuals must be certified as qualified for task assigned
 - Version control maintained on data
 - Data and documentation backed up and retrievable
- Described more fully in paper on VALID
 - Presentation was Tuesday morning, I hope you enjoyed it

VALID procedure and library contents

Critical experiments currently in library and used in validation effort

Sequence	Experiment class	IHECSBE case numbers	Number of configurations
CSAS5/KENO V.a	HEU-MET-FAST	15, 16, 17, 18, 19, 20, 21, 25, 30, 38, 40, 65	18/22ª
	HEU-SOL-THERM	1, 13, 14, 16, 28, 29, 30	52
	IEU-MET-FAST	2, 3, 4, 5, 6, 7, 8, 9	8/11 ^a
	LEU-COMP-THERM	1, 2, 10, 17, 42, 50, <mark>80</mark>	108
	LEU-SOL-THERM	2, 3, 4	19
	MIX-MET-FAST	5, 6	2
	MIX-COMP-THERM	1, 2, 4	21
	PU-MET-FAST	1, 2, 5, 6, 8, 10, 18, 22, 23, 24	10
	PU-SOL-THERM	1, 2, 3, 4, 5, 6, 7, 11, 20	81
CSAS6/KENO-VI	HEU-MET-FAST	5, 8, 9, 10, 11, 13, 24, 80, <mark>86, 92</mark>	24
	IEU-MET-FAST	19	2
	MIX-COMP-THERM	8	28

^aThe larger number includes simplified cases that are duplicate cases for which detailed models are also available in the library.

- 326 cases with KENO V.a
- 54 cases with KENO-VI

5 Managed by UT-Battelle for the U.S. Department of Energy

Validation methods

- Performance reported in terms of calculated-to-experiment ratio (C/E)
- Expected (experiment) value is determined in the IHECSBE evaluation for each experiment
- Uncertainty in C/E is propagated uncertainty in expected k_{eff} value and calculational uncertainty from KENO
 - Uncertainty in expected $k_{\rm eff}$ 10 to 50 times larger than KENO uncertainty
- Linear average C/E value and its uncertainty determined for each category of experiments

Results for three libraries in 6.2B1

Now compared to results from 6.1 (Same experiments in all categories)

KENO-VI Results

Results

- Plots generated for C/E values with experimental and cross section uncertainties
- Experimental uncertainties from IHECSBE
- Cross section uncertainties from TSUNAMI-3D (SCALE 6.1)

Results – KENO V.a MCT C/E values

Results – KENO V.a and VI

- Used C5toC6 utility within SCALE to convert KENO V.a models to KENO-VI models for all experiments in some categories
- Only simple geometries used, 238-group ENDF/B-VII.0 library
- Used SCALE 6.1, similar results expected for SCALE 6.2 and other libraries

Category	KENO V.a Avg. k _{eff}	KENO-VI Avg. k _{eff}	Difference	Cases Within 2σ
HMF	1.00385 ± 0.00002	1.00386 ± 0.00002	-0.00001 ± 0.00005	22/22
LST	0.99884 ± 0.00006	0.99878 ± 0.00006	0.00006 ± 0.00009	17/19
PST	1.00430 ± 0.00001	1.00432 ± 0.00001	-0.00002 ± 0.00002	80/81

Conclusions

- KENO Monte Carlo codes perform well predicting k_{eff} for a broad range of systems in SCALE 6.2B1 with ENDF/B-VII.0 cross sections
- CE typically has smaller deviations from expected k_{eff} values than 238-group or 252-group calculations
 - $S(\alpha, \beta)$ data fix improves CE performance in SCALE 6.2
 - 252-group does particularly well for LCT systems
- KENO-VI and KENO V.a appear to provide equivalent results on identical systems
- KENO appears to run 15% or more slower in 6.2B1 than 6.1

Future work

- Currently testing CE and multigroup ENDF/B-VII.1 libraries
- Finish work replicating KENO V.a benchmarks in KENO-VI to provide solid basis for comparison, update to SCALE 6.2
- Working with the SCALE nuclear data team to evaluate ENDF/B-VII.1 covariance data and development of recommended covariance library for SCALE 6.2
- Add more experiments from the IHECSBE to the VALID library
 - SDF for each case in VALID distributed with IHECSBE

