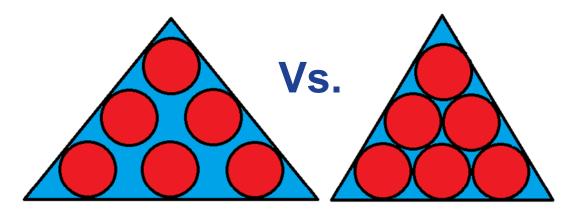

Credible Moderation Content Uranium Oxide Powder and Pellet Systems

Libby Dunn NCSD 2013



Introduction

Goal

To determine the maximum credible water content in powder or pellet systems of various density and particle size without agitation

e.g., Safety Limit = 30 kg vs. 100 kg

GEH/GNF Proprietary Information – Class 1 (Public)

Materials

	Material ID	Bulk Density (g/cm³)	Tap Density (g/cm³)
UK:	$\underline{\mathbf{U}}$ O ₂ powder from UF ₆ to UO ₂ conversion <u>k</u> iln	1	1.5
UP:	<u>U</u> O ₂ <u>pre-compacted</u> and granulated powder	2.4	3
UG:	<u>U</u> O ₂ pellet shavings from dry <u>grinding process</u>	2.4	4.4
U3:	<u>U</u> ₃ O ₈ milled powder	1.9	3.5
GP:	<u>G</u> reen (unsintered) <u>p</u> ellets		
SP:	<u>S</u> intered <u>p</u> ellets		

Theoretical Saturation Point

For any UO₂ powder density less than theoretical, voids exist.

Saturation Wt. %
$$H_2 O = \frac{1 - \frac{\rho_{fuel}}{\rho_{theoretical}}}{1 - \frac{\rho_{fuel}}{\rho_{fuel}} + \rho_{fuel}}$$

e.g., for ρ_{fuel} = 3 g/cm³, saturation wt. % = 19.5 % = maximum credible moderation content without agitation

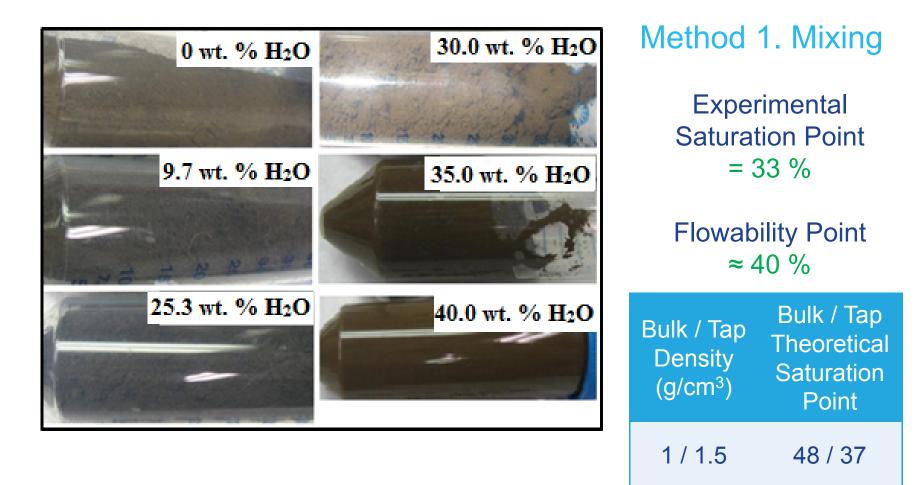
Experimental Saturation Point -Powder

Method 1. Mixing

- 1. Weigh dry powder
- 2. Add water and mix
- 3. Allow to settle
- 4. Suction free standing water
- 5. Weigh wet powder

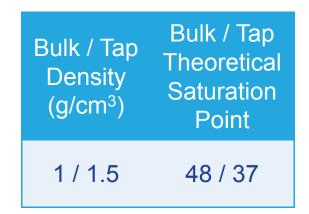
Method 2. No Mixing

- 1. Slowly pour powder into pan to form a cone
- 2. Weigh dry powder
- 3. Slowly add water until no more is absorbed
- 4. Suction free standing water
- 5. Weigh wet powder



$wt. \% H_2 O = \frac{Final \, weight \, - Initial \, weight}{Final \, weight}$

UK – UO₂ powder from UF₆ to UO₂ conversion kiln

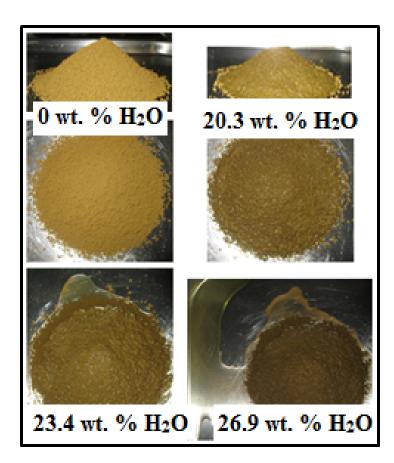

UK – UO₂ powder from UF₆ to UO₂ conversion kiln

	20.2 mt % HaQ
70 Wt. % H2O	20.2 wt. % H2O
40.0 wt. % H ₂ O	41.0 wt. % H ₂ O

Method 2. No Mixing

Experimental Saturation Point = 40 %

Does not become flowable

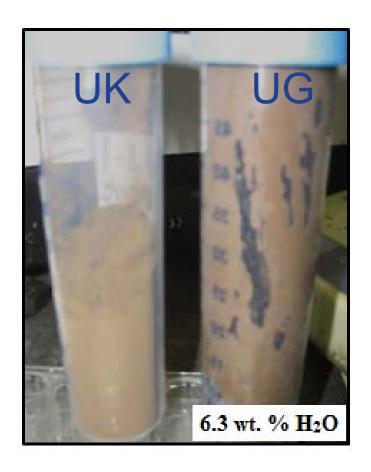


UP – UO₂ pre-compacted and granulated powder

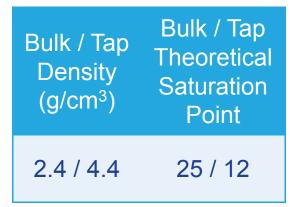
	Method	1. Mixing
0 wt. % H2O 13.7 wt. % H2O	Saturat	rimental tion Point 19 %
5.0 wt. % H ₂ O		ility Point 35 %
11.2 wt. % H ₂ O	Bulk / Tap Density (g/cm³)	Bulk / Tap Theoretical Saturation Point
	2.4 / 3	25 / 19

UP – UO₂ pre-compacted and granulated powder

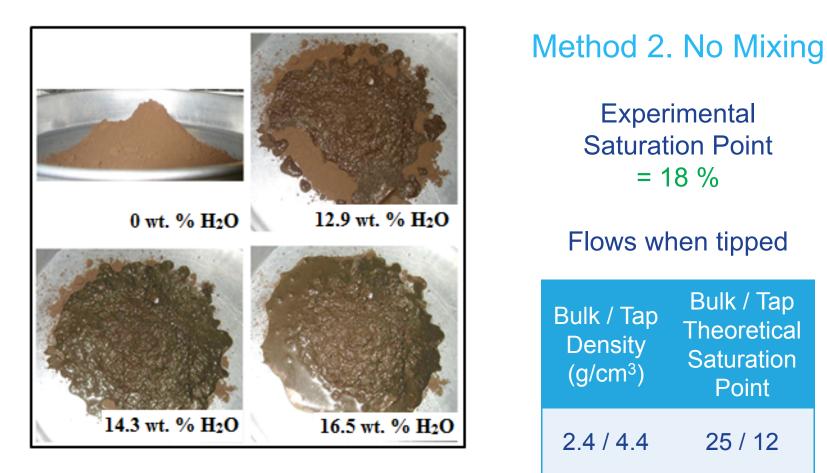
Method 2. No Mixing


Experimental Saturation Point = 22 %

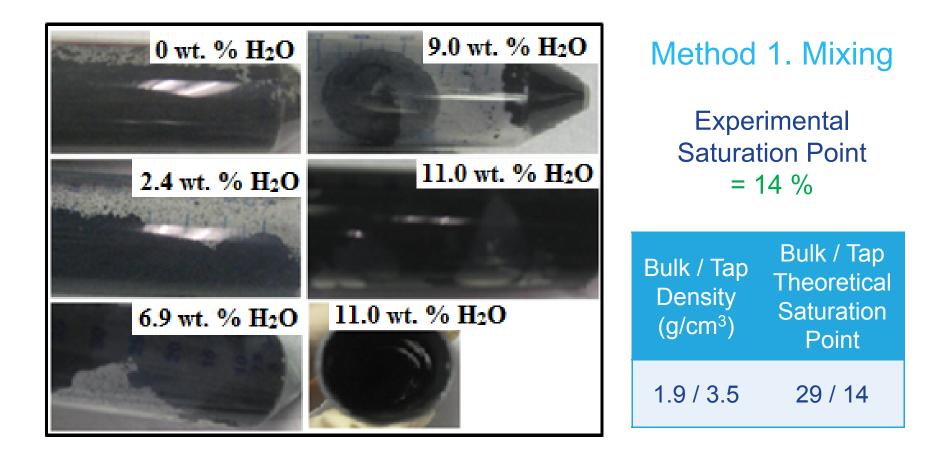
Does not become flowable


UG – UO₂ pellet shavings from dry grinding process

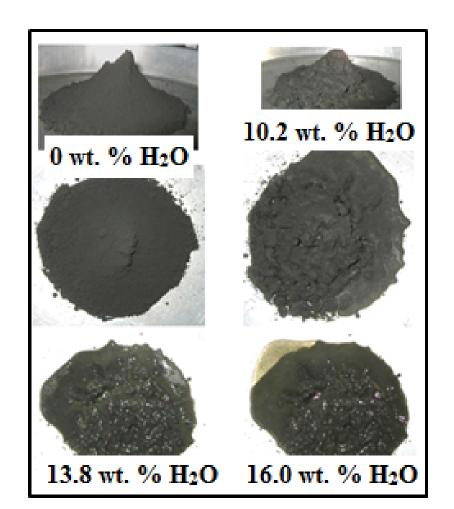
Method 1. Mixing


Experimental Saturation Point = 13 %

Flowability Point ≈ 20 %



UG – UO₂ pellet shavings from dry grinding process



$U3 - U_3O_8$ Milled Powder

$U3 - U_3O_8$ Milled Powder

Method 2. No Mixing

Experimental Saturation Point = 13 %

Does not become flowable

Powder Summary

Material ID	Density Bulk / Tap (g/cm ³)	Theoretical Saturation Point Bulk / Tap	Experimental Saturation Point with Mixing (σ)	Experimental Saturation Point No Mixing	Experimental Flowability Point with mixing
UK	1 / 1.5	48 / 37	33	40	40
UP	2.4 / 3	25 / 19	19	22	35
UG	2.4 / 4.4	25 / 12	13	18	20
U3	1.9 / 3.5	29 / 14	14	13	19

Experimental Saturation Point -Pellets

Method

- 1. Weigh empty beaker (M₁)
- 2. Fill beaker to top with water and weigh (M_2)
- 3. Pour pellets into beaker and weigh (M₃)
- 4. Add water to fill beaker to top and weigh (M_4)

Assume: density of water = 1

$$V_{beaker} = M_{2,beaker} + water - M_{1,beaker}$$

$$V_{water} = M_{4,wet pellets} - M_{3,dry pellets}$$

$$V_{fuel} = V_{beaker} - V_{water}$$

$$\frac{W}{F} = \frac{V_{water}}{V_{fuel}}$$

$$Wt. \% H_2O = \frac{M_{4,wet pellets} - M_{3,dry pellets}}{M_{4,wet pellets}}$$

Sintered Pellets

Beaker Size (mL)	100	250	500	1200
W/F (σ)	0.85	0.79	0.72	0.66
	(0.01)	(0.03)	(0.003)	(0.02)
wt. % H ₂ O (σ)	7.6	6.6	6.3	5.9
	(0.1)	(0.1)	(0.1)	(0.1)

Zou and Yu (1996) predicted a W/F range of 0.59-0.86 for random packing of equilateral cylinders.

wt. % H_2O left after water is drained off = 3.0 (0.4) %

Green Pellets

Beaker Size (mL)	100	250	500	1200
W/F (σ)	1.40	1.05	0.82	0.92
	(0.25)	(0.04)	(0.03)	(0.08)
wt. % H ₂ O (σ)	17.0	13.9	12.0	12.0
	(1.2)	(0.2)	(0.3)	(0.3)

It is recommended to use wt. % H_2O for porous material such as green pellets. The measured volume of pellets is underestimated when water is absorbed into the pellet. $V_{fuel} = V_{beaker} - V_{water}$

Wt. % H_2O left after water is drained off = 8.2 (0.5) %

Conclusion

Powder with mixing:

- saturation point = f(tap density)
- flowability = f(tap density, bulk density, particle size dist.)

Powder without mixing:

saturation point = f(tap density, bulk density, particle size dist.)

Sintered pellets

- In a container (≥ 1.2 L): wt. % H₂O = 5.9 % (W/F = 0.66)
- After draining: wt. % $H_2O = 3.0$ %

Green pellets

- In a container (≥ 1.2 L): wt. % H₂O = 12.0 %
- After draining: wt. % $H_2O = 8.2$ %

Recommendations

The bulk density of a powder may be conservatively used to limit the credible moderation content and increase the mass or geometry subcritical limit.

The flowability of a powder may be used to determine maximum credible moderation content for various accident scenarios, e.g., holdup in a HEPA filter.

Recommendations

The maximum credible water content of randomly packed pellets may be used to increase the mass or geometry subcritical limits.

Safe Mass Limits for Sintered Pellets

Geometry	12" Reflection (W/F = Optimal)	12" Reflection (W/F = 1)
Sphere	36	178
Hemisphere	41	191

The water content remaining on pellets after draining may be used to represent the water layer that would form under various accident conditions, e.g., a spill of pellets on a floor with simultaneous sprinkler activation.

Future Work

- Powder behavior with other moderators (e.g., oil, pore former, lubricant)
- Distribution of water within powder as a function of powder density and water content
- W/F for pellets stacked in a pellet boat (i.e., not randomly packed)

