Analysis of Measured Data from Experiments 2 & 3 of the 2010 CAAS Benchmark at the CEA Valduc SILENE Facility

Thomas M. Miller

Reactor & Nuclear Systems Division

NCSD 2013 Topical Wilmington, NC

September 29 – October 3, 2013

ED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF

Institutions involved in SILENE CAAS benchmarks

- Oak Ridge National Laboratory
 - Design, measurements, documentation, and evaluation
 - T. M. Miller, M. E. Dunn, J. C. Wagner, and K. L. McMahan
- CEA Valduc
 - Design, irradiation, measurements, and documentation
 - N. Authier, X. Jacquet, G. Rousseau, H. Wolff, J. Piot, L. Savanier and N. Baclet
- CEA Saclay
 - Shielding materials and evaluation
 - Y. K. Lee, V. Masse, J. C. Trama, E. Gagnier, S. Naury, and P. Blanc-Tranchant
- Lawrence Livermore National Laboratory
 - Rocky Flats CAAS
 - S. Kim and G. M. Dulik
- Babcock International Group
 - CIDAS CAAS
 - R. Hunter
- Y-12 National Security Complex
 - BoroBond shielding materials
 - K. H. Reynolds

Outline

- Brief introduction to SILENE
- Summary of experimental details
- Comparison between measurement & computational results
 - SCALE 6.1
 - TRIPOLI-4
- Summary and conclusions

Introduction to SILENE

- Annular core
 - Internal cavity diameter 7 cm
 - Outer fuel diameter 36 cm
 - Typical critical height ~35 45 cm
- Uranyl Nitrate fuel Solution
 - ~93% ²³⁵U
 - ~71 g of uranium per L
- Power level ranges from 10 mW to 1000 MW
- Three operating modes
 - Single pulse
 - Free evolution
 - Steady State

Summary of experimental details (1)

- More details & pictures in ICNC 2011 paper
- Experiment 2
 - Single pulse, SILENE surrounded by lead reflector (shield)
 - Collimator A unshielded
 - Full set of neutron activation foils
 - Valduc Al₂O₃, ORNL HBG & DXT TLDs
 - Rocky Flats CAAS
 - Collimator B 20 cm standard concrete
 - Full set of neutron activation foils
 - Valduc Al₂O₃, ORNL HBG & DXT TLDs
 - Rocky Flats & CIDAS CAAS

Summary of experimental details (2)

- Free-field location

- Full set of neutron activation foils
- Valduc Al₂O₃, ORNL HBG & DXT TLDs
- Scattering Box (2 magnetite & 4 standard concrete shields)
 - Full set and 3 partial sets of neutron activation foils
 - 4 Valduc Al₂O₃, 2 ORNL HBG, and 2 ORNL DXT TLDs
 - Rocky Flats & CIDAS CAAS
- Experiment 3 modifications
 - Single pulse, SILENE surrounded by cadmium lined polyethylene reflector (shield)
 - Collimator B concrete replaced by 3" (7.62cm) of BoroBond

Photographs of experiments

NCSD 2013 Topical

Benchmark evaluation

- Also a joint effort between the US DOE and French CEA
 - ORNL is evaluating these benchmarks with SCALE and MCNP
 - LLNL is performing an evaluation with COG
 - Saclay is performing an evaluation with TRIPOLI
- High level overview of computational process
 - Perform an eigenvalue calculation and tally the spatial and energy dependence of the fission source
 - Complete any a priori variance reduction (source biasing, importance map/weight window generation, etc.)
 - Perform a fixed source transport calculation and tally the detector responses.

OR

- Perform an eigenvalue calculation and tally the detector responses.
- Cross sections & tally response functions
 - ENDF/B-VII.0 and JEFF-3.1.1, except IRDF-2002 for ¹¹⁵In(n,n')^{115m}In
 - ICRU air kerma factors for TLDs

Comparisons between calculations and measurements for experiments 2 and 3

Comparison of computational and measured results for simulations of Collimator A

		SCALE 6.1		TRIPOLI-4®	
			Relative		Relative
Position	Reaction	Ratio: C/E	Uncertainty	Ratio: C/E	Uncertainty
			(2 sigma)		(2 sigma)
	⁵⁹ Co(n, γ) ⁶⁰ Co	1.16	4.62%	1.04	5.40%
	$^{197}Au(n,\gamma)^{198}Au$	1.21	3.59%	1.18	8.47%
	115 In(n, γ) 116m In	1.50	4.58%	1.11	7.63%
Experiment 2	115 In(n,n' γ) 115m In	0.94	3.75%	0.93	4.44%
_	56 Fe(n,p) 56 Mn +	1 14	6.01%	0.01	7 03%
Collimator A	$^{55}Mn(n,\gamma)^{56}Mn$	1.14	0.01%	0.91	7.93%
	²⁴ Mg(n,p) ²⁴ Na	1.20	4.30%	1.08	4.42%
	⁵⁸ Ni(n,p) ⁵⁸ Co	1.08	3.39%	1.09	3.31%
	TLD - Al_2O_3	0.79	5.81%	0.69	7.82%
	⁵⁹ Co(n,γ) ⁶⁰ Co	0.95	5.50%	0.93	7.04%
	$^{197}Au(n,\gamma)^{198}Au$	0.87	7.93%	0.89	13.4%
	115 In(n, γ) 116m In	1.14	5.97%	0.89	7.53%
Experiment 3	$^{115}In(n,n'\gamma)^{115m}In$	0.83	3.58%	0.96	4.40%
	56 Fe(n,p) 56 Mn +	0.96	4 470/	0.02	5 420/
Collimator A	$^{55}Mn(n,\gamma)^{56}Mn$	0.80	4.47%	0.92	5.45%
	$^{24}Mg(n,p)^{24}Na$	1.00	8.82%	0.90	8.87%
	⁵⁸ Ni(n,p) ⁵⁸ Co	0.90	3.55%	0.95	5.28%
	TLD - Al_2O_3	0.62	5.53%	0.71	5.62%

Comparison in table only considers computational uncertainty and measurement uncertainty of foil activity

Comparisons between calculations and measurements for experiment 2

 Comparison in figure considers computational uncertainty, measurement uncertainty of foil activity, and uncertainty on number of fission events

NCSD 2013 Topical

Comparisons between calculations and measurements for experiment 3

 Comparison in figure considers computational uncertainty, measurement uncertainty of foil activity, and uncertainty on number of fission events

NCSD 2013 Topical

Summary and conclusions (1)

- The final measurement data for the 2010 SILENE CAAS benchmark experiments 2 and 3 is published in the conference paper
- Experiment 2 SCALE and TRIPOLI results statistically the same and over predict measurements except for:
 - ¹¹⁵In(n,n')^{115m}In & TLD under predicts measurement
 - ${}^{115}In(n,\gamma){}^{116}In \& [{}^{56}Fe(n,p){}^{56}Mn + {}^{56}Mn(n,\gamma){}^{56}Mn]$ not statistically the same
- Experiment 3 SCALE and TRIPOLI results statistically the same and under predict measurements except for:
 - ¹¹⁵In(n, γ)¹¹⁶In not statistically the same

Summary and conclusions (2)

- Issues needing further investigation before submission to the ICSBEP
 - CE TRIPOLI ¹¹⁵In(n,γ)¹¹⁶In results agree better with experiment, is SCALE group structure a problem
 - TLD response function
 - Uncertainty analysis for experiments 2 and 3
 - Stay tuned for uncertainty analysis for experiment 1 (Kevin Reynolds & Thomas Miller at 2:30)

Institutions involved in SILENE CAAS benchmarks

- Oak Ridge National Laboratory
 - Design, measurements, documentation, and evaluation
 - T. M. Miller, M. E. Dunn, J. C. Wagner, and K. L. McMahan
- CEA Valduc
 - Design, irradiation, measurements, and documentation
 - N. Authier, X. Jacquet, G. Rousseau, H. Wolff, J. Piot, L. Savanier and N. Baclet
- CEA Saclay
 - Shielding materials and evaluation
 - Y. K. Lee, V. Masse, J. C. Trama, E. Gagnier, S. Naury, and P. Blanc-Tranchant
- Lawrence Livermore National Laboratory
 - Rocky Flats CAAS
 - S. Kim and G. M. Dulik
- Babcock International Group
 - CIDAS CAAS
 - R. Hunter
- Y-12 National Security Complex
 - BoroBond shielding materials
 - K. H. Reynolds

