Guidance Detailing Methods to Calculate CAAS Detector Response and Coverage

Thomas M. Miller

Douglas E. Peplow

Reactor & Nuclear Systems Division

NCSD 2013 Topical Wilmington, NC

September 29 – October 3, 2013

Motivation and outline

Motivation

 Help criticality safety practitioners that have little experience with fixed-source transport calculations perform CAAS analysis

Outline

- Introduction
- Scope and limitations
- Minimum accident of concern (MAOC)
- CAAS placement analysis strategy
- Summary and conclusions

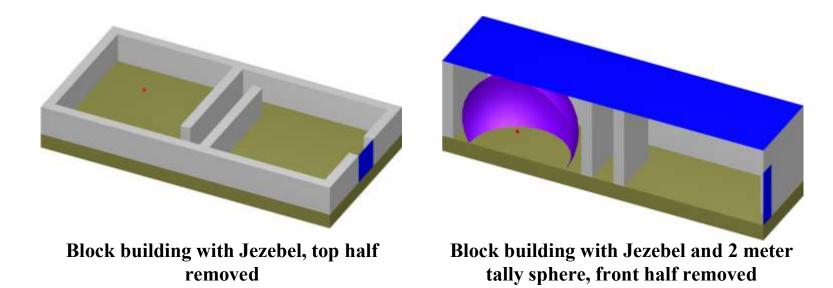
Introduction

- Full document: ORNL/TM-2013/211 http://scale.ornl.gov/caas_input.shtml
 - Brief discussion of ANSI/ANS-8.3
 - Discussion of how CAAS detector response calculations are different from eigenvalue calculations
 - Examples with SCALE and MCNP
 - MAOC, CAAS detector response, CAAS coverage
 - Strategy to determine the optimum placement of the minimum number of CAAS detectors
- This extended summary (conference DVD)
 - MAOC example (using ANSI/ANS-8.3 definition)
 - Strategy to determine the optimum placement of the minimum number of CAAS detectors
 - CAAS coverage example

Scope and limitations

- The guidance provided covers just the detector response calculations, not several other important aspects of CAAS analysis
 - Determination of credible accidents & accident locations
 - Minimum accidents of concern other than that prescribed in ANSI/ANS-8.3
 - What set of flux-to-dose-rate conversion factors are appropriate for your analysis
 - Kinetic behavior of a criticality accident & excursion shutdown mechanisms
 - Initial evacuation zones
 - However, the methods used to determine CAAS detector responses over a larger area using mesh tallies can be applied to initial evacuation zones

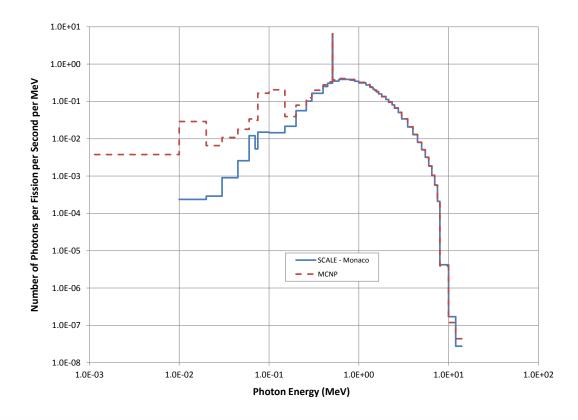
Minimum accident of concern (MAOC)


According to ANSI/ANS-8.3

- A CAAS shall respond immediately to the minimum accident of concern, which may be assumed to deliver the equivalent of an absorbed dose rate in free air of 0.2 Gy/min at 2 meters.
- First, model the credible accident and location and calculate the dose rate per fission rate 2 meters from the accident $(D_N + D_P)$
- Use the the calculated dose rate per fission rate and the minimum accident dose rate to determine the MAOC fission rate

$$N_{MAOC} = \frac{0.2 \ Gy/min}{D_N + D_P}$$

MAOC example with Jezebel


- Differences between MCNP and SCALE
 - MCNP: easily calculate detector response with eigenvalue calculation
 - SCALE: easily create fixed source & perform automated variance reduction for heavily shielded / loosely coupled critical source & detector
 - MCNP: more detailed physics for low energy photons (even CE Monaco)

MAOC example with Jezebel

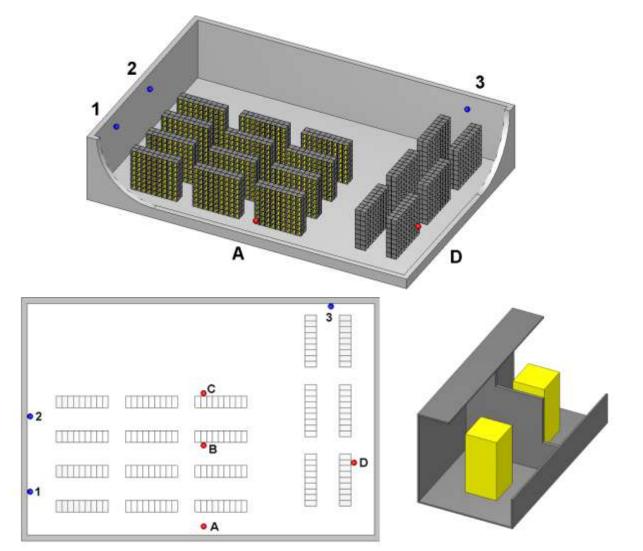
Determination of the minimum accident of concern for Jezebel in a simple block building

Result	MAVRIC/Monaco	MCNP
Neutron air kerma (Gy/min per fission/sec)	$1.83133E-15 \pm 0.074\%$	$1.8352\text{E-}15 \pm 0.02\%$
Photon air kerma (Gy/min per fission/sec)	$5.85128\text{E-16} \pm 0.183\%$	$6.6624\text{E-}16 \pm 0.05\%$
Minimum accident of concern (fissions/sec)	8.2766E+13	7.9954E+13

CAAS placement strategy

- Different approaches for CAAS detector placement studies
 - Based on comparison between number of accident sites and detector locations
 - Adjoint approaches are not all available with SCALE or MCNP

Detector locations D Geometry				Approach			
and Accident sites A							
Comparison	Α	D			Direction	Biasing	Tallies
A < D	small	small	sparse	1.	forward	analog	standard tallies
A < D	small	large	sparse	2.	forward	analog	mesh tally
A < D	small	small	dense	3.	forward	CADIS	standard tallies
A < D	small	large	dense	4.	forward	FW-CADIS	mesh tally
$D <\!\!A$	small	small	sparse	5.	adjoint	analog	standard tallies
$D <\!\!A$	large	small	sparse	6.	adjoint	analog	mesh tally
$D <\!\!A$	small	small	dense	7.	adjoint	CADIS	standard tallies
D <a< td=""><td>large</td><td>small</td><td>dense</td><td>8.</td><td>adjoint</td><td>FW-CADIS</td><td>mesh tally</td></a<>	large	small	dense	8.	adjoint	FW-CADIS	mesh tally

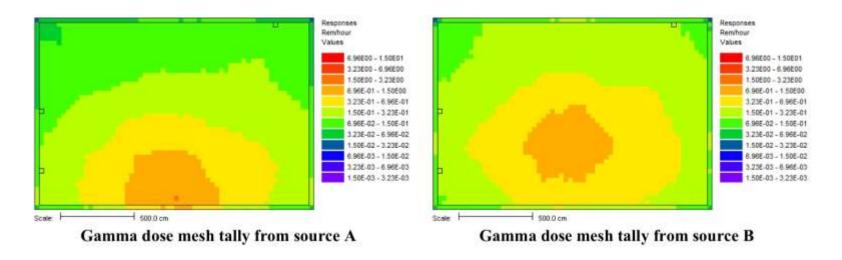

CAAS placement strategy

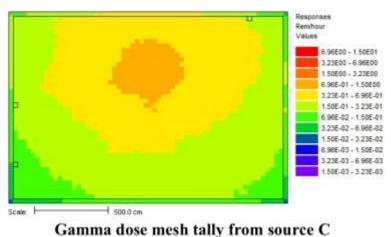
• Different approaches for CAAS detector placement studies

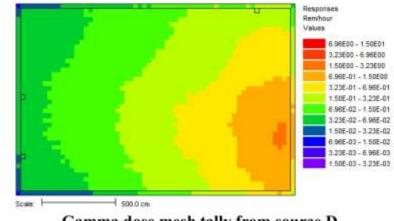
Detector locations D Geometry		Geometry		Approach			
and Accident sites A							
Comparison	Α	D			Direction	Biasing	Tallies
A < D	small	small	sparse	1.	forward	analog	standard tallies
$A <\!\!D$	small	large	sparse	2.	forward	analog	mesh tally
A < D	small	small	dense	3.	forward	CADIS	standard tallies
A < D	small	large	dense	4.	forward	FW-CADIS	mesh tally
$D <\!\!A$	small	small	sparse	5.	adjoint	analog	standard tallies
D < A	large	small	sparse	6.	adjoint	analog	mesh tally
$D <\!\!A$	small	small	dense	7.	adjoint	CADIS	standard tallies
$D <\!\!A$	large	small	dense	8.	adjoint	FW-CADIS	mesh tally

Forward Placement Analysis Approach 4: Forward Simulation, FW-CADIS, Mesh Tallies

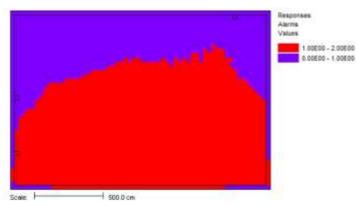
NCSD 2013 Topical

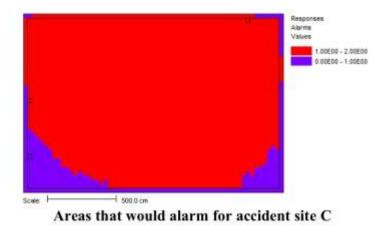

Direct comparison of dose rates at detector locations (rem)

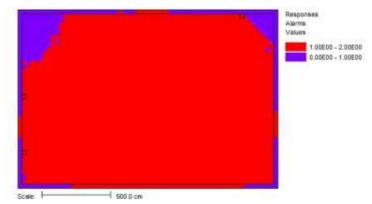

Source or Accident Site	Detector	MAVRIC/Monaco	MCNP	Ratio: MAVRIC / MCNP	
Α	1	$1.81\text{E-1} \pm 2.55\%$	$2.40\text{E-1} \pm 0.49\%$	0.75 ± 0.02	
Α	2	$1.06\text{E-1} \pm 2.00\%$	$1.50\text{E-1} \pm 0.46\%$	0.71 ± 0.01	
Α	3	$9.55E-2 \pm 2.45\%$	$1.22\text{E-1} \pm 0.48\%$	0.78 ± 0.02	
В	1	$1.91E-1 \pm 2.38\%$	$2.43\text{E-1} \pm 0.51\%$	0.78 ± 0.02	
В	2	$1.77E-1 \pm 2.26\%$	$2.35\text{E-1} \pm 0.48\%$	0.75 ± 0.02	
В	3	$1.59\text{E-1} \pm 2.46\%$	$2.01\text{E-}1 \pm 0.52\%$	0.79 ± 0.02	
С	1	$1.12\text{E-1} \pm 2.24\%$	$1.46\text{E-1} \pm 0.47\%$	0.77 ± 0.02	
С	2	$1.93\text{E-1} \pm 2.25\%$	$2.64\text{E-1} \pm 0.45\%$	0.73 ± 0.02	
C	3	2.99E-1 ± 2.36%	$3.89\text{E-1} \pm 0.50\%$	0.77 ± 0.02	
D	1	$4.78E-2 \pm 3.06\%$	$6.29\text{E-}2 \pm 0.68\%$	0.76 ± 0.02	
D	2	$5.72\text{E-}2 \pm 4.22\%$	$7.17\text{E-}2 \pm 0.83\%$	0.80 ± 0.03	
D	3	$2.44\text{E-1} \pm 2.15\%$	$3.25E-1 \pm 0.52\%$	0.75 ± 0.02	


- Differences due to neutron only source, i.e. photons only born from inelastic scattering and neutron capture
- Course photon group structure, 47 photon groups
- Agreement between MCNP and continuous energy MAVRIC/Monaco (SCALE 6.2 beta) much improved, ~6% different

Dose contours

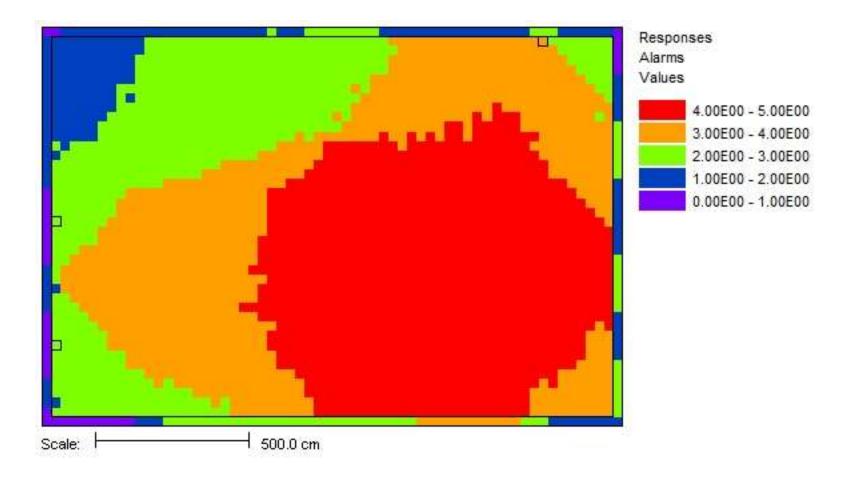



Gamma dose mesh tally from source D



Contours filtered: Red – dose above 0.15 rem (alarm) Purple – dose below 0.15 rem (no alarm)

Areas that would alarm for accident site A



Areas that would alarm for accident site B

Sum previous filtered plots: Number of detectors providing coverage

NCSD 2013 Topical

Summary and conclusions

- Summary of ORNL/TM-2013/211, see the full report for more details and more examples
 - Download the report and example input files
 http://scale.ornl.gov/caas_input.shtml
- Two points to remember
 - All stakeholders should help determine credible accidents, locations, and appropriate flux-to-dose-rate conversion factors
 - To select the most efficient analysis methodology, consider the number of detectors versus accidents

