THE UNIVERSITY of TENNESSEE UNIVERSITY OF TENNESSEE

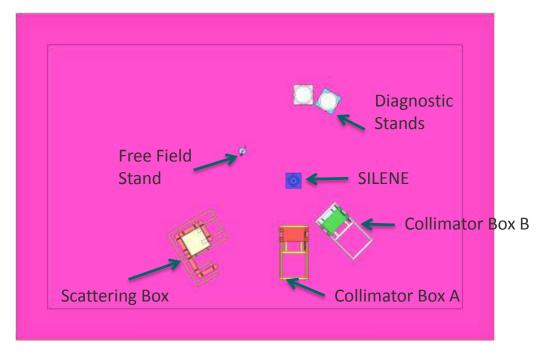
Sensitivity and Uncertainty Analysis of a Fixed Source Criticality Accident Alarm System Benchmark Experiment

Kevin H. Reynolds, Thomas M. Miller, and Larry F. Miller
Y-12 National Security Complex
Oak Ridge National Laboratory
The University of Tennessee, Knoxville
Presented by Thomas M. Miller

Outline

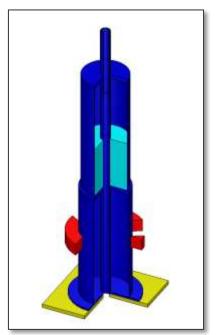
- The Experiment
- The Results
 - High Fidelity 3-D Model & Simplification
 - Sensitivity Analysis of Simplified Model
 - Benchmark Model Uncertainty
 - Computational Results compared with measurements
- Conclusions and Future Work

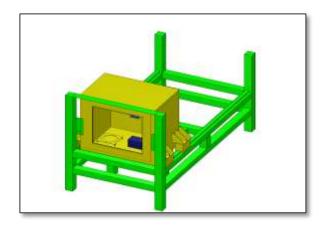
The Experiment

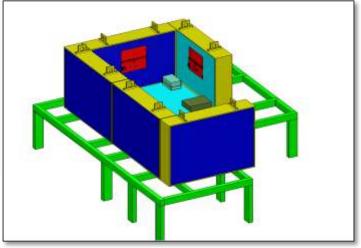


The Experiment

- The experiment was conducted at the CEA Valduc SILENE facility.
- SILENE uses 93.2% ²³⁵U Uranyl Nitrate for fuel.
- The reactor can run shielded or unshielded with a lead or polyethylene shield.
- Four types of detectors were used:
 - Neutron Activation Foils for neutron activation
 - TLDs for Gamma Dose
 - CAAS detectors for "go or no go" (i.e. did they work?)
 - Liquid Scintillators for neutron and gamma spectra

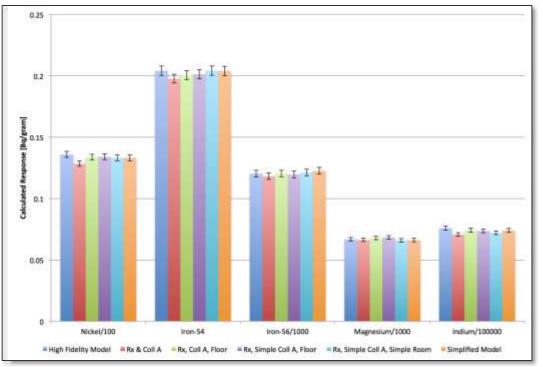




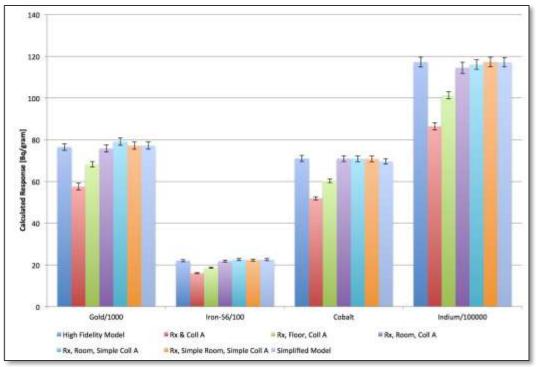


High Fidelity Model Results

Foil	Reaction	Computed Response [Bq/g]	Computed Uncertainty (± σ)	Computed Relative Uncertainty (± %σ)	Measured Response [Bq/g]	Measured Uncertainty (± σ)	Measured Relative Uncertainty (± %σ)	Ratio of Computed to Measured Response (C/E)	
	2			Threshold F	Reactions	· ·			
Ni	58Ni(n,p)58Co	13.592	0.121	0.8902	14.36	0.22	1.5320	0.9465	
Fe	54Fe(n,p)54Mn	0.20415	0.002	0.9797	0.2062	0.0041	1.9884	0.9901	
Fe ¹	56Fe(n,p)56Mn	120.30	1.395	1.1596	N/A	N/A	N/A	N/A	
Mg	24Mg(n,p)24Na	66.780	0.7095	1.0624	61.1	1.15	1.8822	1.0930	
In	115In(n,n',y)115mIn	7592.00	88.000	1.1591	8030	125.0	1.5567	0.9455	
	N/	U	77.	Thermal R	eactions	1/6	es l	7.	
Au	197Au(n,y)188Au	76491.0	804.50	1.0518	1.812x10 ⁵	2850.0	1.5728	0.4221	
Fe ²	55Mn(n,y)56Mn	2202.30	25.10	1.1397	N/A	N/A	N/A	N/A	
Co	⁵⁹ Co(n,γ) ⁶⁰ Co	71.0130	0.715	1.0069	66.1	0.85	1.2859	1.0743	
In	115In(n,γ) ¹¹⁶ In	1.17200x10 ⁷	1.19500x10 ⁵	1.0196	9.11x10 ⁶	1.75x10 ⁵	1.9210	1.2865	
	NT I			Threshold + Then	mal Reactions	ov.			
Fe	1+2	2322.6	25.1387	1.0824	2310	30.5	1.3203	1.0055	


Model Simplification

- High Fidelity model too complex for benchmark Handbook.
- Simplifications to model evaluated by comparing computational results of altered model to the original high fidelity results.
- Initial simplification was made by removing all model components EXCEPT the reactor, the collimator box, and the activation foils inside their aluminum frame inside the collimator box.
- Computed results from initial simplification were not statistically equivalent. Therefore, various aspects of model were systematically added in and the results compared.
- Simplified model was finalized as SILENE, the box portion of collimator box A and a simplified representation of the entire reactor cell (ceiling, walls, and floor all present with no doors or rail system in model).


Model Simplification: Threshold Responses

Model Simplification: Thermal Responses

Simplified Model Sensitivity

- Benchmark experiment had many known uncertainties to which the computational model could be sensitive.
- Selected those known uncertainties that directly impacted the Pulse 1 model associated with collimator box A.
 - Thickness of the activation foil
 - ²³⁵U enrichment of uranyl nitrate fuel
 - Density of the PPB9 (polyethylene) in collimator box
 - Presence of impurities in the foils and aluminum frame
- Threshold foil reactions turned out to be essentially insensitive to any changes associated with the above parameters and so no sensitivity coefficients were computed for the threshold reactions.

Thermal Foil Sensitivity Coefficients

Parameter	S	σs		
Gold Foil				
Foil Thickness	0.6816	0.0099		
²³⁵ U Number Density	-0.2099	0.0290		
PPB9 Density	-0.2152	0.0319		
Cobalt Foil				
Foil Thickness	0.7497	0.0112		
²³⁵ U Number Density	-0.3282	0.0295		
PPB9 Density	-0.2664	0.0280		
Indium Foil				
Foil Thickness	0.4290	0.0064		
²³⁵ U Number Density	-0.2207	0.0272		
PPB9 Density	-0.0948	0.0280		
Iron Foil (Iron-56)				
Foil Thickness	Not Sensitive			
²³⁵ U Number Density	-0.3598	0.0351		
PPB9 Density	-0.1307 0.047			

Benchmark Uncertainty

- Each of the sensitivity coefficients computed for the thermal foils was converted to a benchmark uncertainty associated with that parameter by multiplying the known experimental uncertainty with the computed sensitivity coefficient.
- The total benchmark uncertainty for each foil was computed by combining the individual parameter uncertainties (square root of the sum of the squares).
- The reported total number of fissions was reported as having an uncertainty of 4%. Every thermal and threshold foil response was required to include this as part of the benchmark uncertainty since the total number of fissions was used to convert the computed responses from a per fission basis to a total value by multiplying by the total number of fissions.

Benchmark Uncertainty

Parameter	S	R	x	σx	σ _{R,1}	% or.1
Gold Foil						
Foil Thickness	0.6816	7.7183E04	0.025 cm	2.5E-03	5.2608E03	6.816
²³⁵ U Number Density	-0.2099	7.7183E04	1.669503E-04 at/b-cm	3.3390E-08	-3.2401	4.1979E-03
PPB9 Density	-0.2152	7.7183E04	1.02 g/cm ³	0.102	-1.6610E03	2.152
Total Fissions					7.520E15	4.0
				Total		8.1908
Cobalt Foil			MILES 22			
Foil Thickness	0.7497	6.9614E01	0.2 cm	2.0E-02	5.2190	7.4971
²³⁵ U Number Density	-0.3282	6.9614E01	1.669503E-04 at/b-cm	3.3390E-08	-4.5694E-03	6.5639E-03
PPB9 Density	-0.2664	6.9614E01	1.02 g/cm ³	0.102	-1.8546	2.6641
Total Fissions					7.520E15	4.0
				Total		8.9053

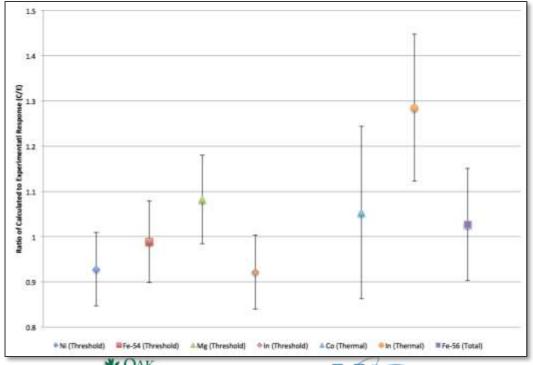
Benchmark Uncertainty

Parameter	S	R	x	σx	σ _{R,x}	% GR.x		
Indium Foil								
Foil Thickness	0.4290	1.1708E07	0.1 cm	1E-02	5.0227E05	4.2900		
²³⁵ U Number Density	-0.2207	1.1708E07	1.669503E-04 at/b-cm	3.3390E-08	-5.1678E02	4.4139E-03		
PPB9 Density	-0.0948	1.1708E07	1.02 g/cm ³	0.102	-1.1091E05	0.9473		
Total Fissions					7.520E15	4.0		
				Total		5.9415		
Iron Foil (Iron	1-56)			**************************************				
Foil Thickness	Not Sensitive							
²³⁵ U Number Density	-0.3598	2.2501E03	1.669503E-04 at/b-cm	3.3390E-08	-1.6192E-01	7.1961E-03		
PPB9 Density	-0.1307	2.2501E03	1.02 g/cm ³	0.102	-2.9409E01	1.3070		
Total Fissions					7.520E15	4.0		
				Total		4.2081		

Final Results Summary

- The benchmark uncertainty for each foil reaction was combined with the computational uncertainty (Monte Carlo) to determine the final amount of total uncertainty associated with each computed estimate of response.
- The simplified model computational results were used to compute final estimates of the C/E for each foil reaction and the total uncertainty associated with the estimates were propagated through the final C/E estimate using propagation of error.
- The gold foil was not reported as part of the final results due to the discovered error in the pulse 1 measurement.

Final Results Summary


Foil	Simplified	Calculated	Benchmark	Total	Measured	Measured	C/E	C/E		
	Calculated	Uncertainty	Uncertainty	Uncertainty	Response	Uncertainty		Uncertainty		
	Response	(± %σ)	(± %σ)	(± %σ)	[Bq/g]	(± %σ)		(± %σ)		
	[Bq/g]									
Threshold Foils										
Ni	13.325	0.9094	4.0	4.1021	14.360	1.5320	0.9279	4.3788		
Fe-54	0.2039	0.9294	4.0	4.1066	0.2062	1.9884	0.9888	4.5627		
Fe-56 ¹	122.57	1.1259	4.0	4.1554	N/A	N/A	N/A	N/A		
Mg	66.134	1.0343	4.0	4.1316	61.100	1.8822	1.0824	4.5401		
In	7402.1	1.1193	4.0	4.1537	8030	1.5567	0.9218	4.4357		
			The	rmal Foils						
Au	7.7183 x10 ⁴	1.0518	8.1908	8.2581	1.812x10 ⁵	1.5728	N/A	N/A		
Co	69.614	1.0069	8.9053	8.9620	66.1	1.2859	1.0532	9.0538		
In	1.1708 x10 ⁷	1.0196	5.9415	6.0284	$9.11x10^{6}$	1.9210	1.2852	6.3271		
Fe-56 ²	2.2501x10 ³	1.1397	4.2081	4.3597	N/A	N/A	N/A	N/A		
Thermal + Threshold										
Fe-56 (1 + 2)	2372.67	1.0153	5.8059	5.8940	2310.00	1.3203	1.0271	6.0401		

Final Results Summary

(error bars 2 sigma)

Conclusions

- Both the High Fidelity and Simplified computational models generate acceptable estimates of neutron activation when compared to the measured dosimetry.
- Previous shielding benchmarks were considered to be in good agreement with as much as 30 percent relative error. The estimates of response in this benchmark all have relative errors of less than 10 percent (with one exception) a factor of 3 increase in accuracy from previous efforts.
- The thermal indium foil estimate error of 28% allows this reaction to be used as benchmark quality data (given that previous benchmarks included data with such high relative errors) but given the accuracy of the other foil estimates seems to indicate the need for further study.
- The measured dosimetry data from pulse 1 and collimator box A is acceptable to be used as a CAAS benchmark.

Future Work

- There were no "known" uncertainties associated with the composition and density of the reactor cell concrete. Because of this variations associated with these parameters was left to be done as part of future work.
- Similarly, other materials in the collimator box (lead, copper, steel) could also contribute benchmark uncertainty and should be studied further.
- The systematic methodology used to derive the simplified computational model for collimator box A needs to be used to derive acceptable simplified models for the remaining pulse 1 components (collimator box B, scattering box, and the free field stand).
- Once the appropriate simplified models for the remainder of pulse 1 have been determined all of the simplified models need to be used to estimate the gamma responses and compare them to the measured TLD data.
- Pulse 2 and pulse 3 need to be studied in a similar fashion so as to publish the final two benchmarks associated with this experimental effort.

