

babcock CIDAS®

Radiation Tolerance Assessment of a Criticality Accident Alarm System

Radiation Tolerance Testing

Why is Radiation Tolerance Testing required?

babcock

trusted to deliver

- Method for testing CIDAS MkXI
- Results and Conclusions

Introduction

- A CIDAS[®] MkXI system has been developed with a new components and technology:
 - Logic
 - Tone Generation
 - Amplifiers
 - FPGAs are used
- New Generation UPS
- New detector options
- Alternative annunciator

Requirement For Testing

Standards define radiation tolerance requirements: SRD R 309 – Design Criteria and Principles for Criticality Detection and Alarm Systems Delafield and Clifton

ISO 7753 – Performance and Testing Requirements for Criticality Detection and Alarm Systems International Standardization Organisation

IEC 60860 – Warning Equipment for Criticality Accidents International Electrotechnical Commission

ANSI / ANS 8.3 – Criticality Accident Alarm System American Nuclear Society

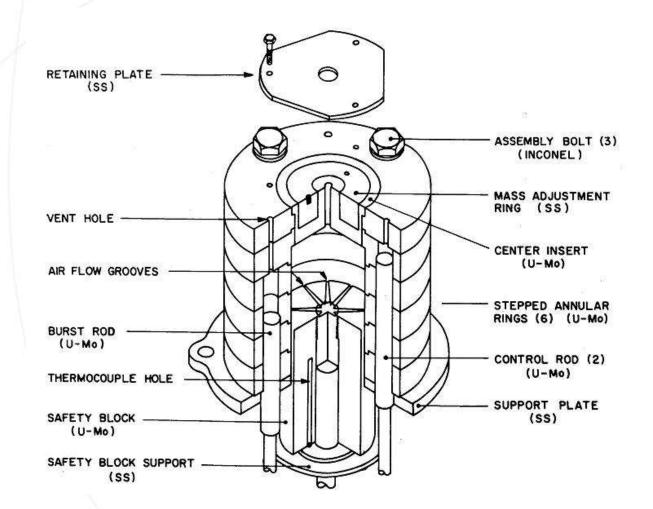
Requirement For Testing

- CIDAS[®] must continue to operate when subjected to high levels of radiation from accidental excursion.
- Experimental testing with a critical pulse is required to be certain of system tolerance.
- Experiments on CIDAS[®] MkX resulted in failure of DC-DC Converters (2002)
- Design change on MkX from 48VDC to 24VDC UPS

- Testing is required to deliver defined gamma / neutron dose to various components.
- Specified levels for our tests in line with UK customer standard and exceeding other standards:

Equipment	Simulated Distance from Pulse of 10 ¹⁸ fissions / m	Neutron Fluence / cm ⁻²	Neutron Dose / Gy	γ Dose / Gy	γ Dose Rate / Gy.hr ⁻¹
CIDAS [®] Detectors / Speakers / Lamp Modules	1	2.0x10 ¹³	300	200	~7.2x10 ⁸
CIDAS [®] MkXI Main Panel & UPS	20	5.0x10 ¹⁰	0.75	0.50	~1.8x10 ⁶

- Testing is required to deliver defined gamma / neutron dose to various components.
- Key considerations:
 - Achieving correct dose level
 - Reliable remote monitoring of component functionality
 - Minimising number of pulses
 - Ensuring successful collection of required data
- Method was planned and rehearsed in detail prior to performing tests.


Location - White Sands Missile Range, US Reactor - Molly-G - Fast Burst Reactor (FBR) (un-moderated, un-reflected bare critical assembly of

the Godiva II type)

WSMR Fast Burst Reactor

Test Methodology - Positioning

- Achievement of correct dose level relies on:
 - Correct specification
 - Good characterisation of reactor
 - Careful design of test geometry

Test Methodology – Dose Measurement

- The dose that each component received was measured during each pulse.
 - TLDs were used to measure γ dose
 - Sulphur activation was used to measure n fluence
- Dose was measured at several points for large items
- Applied dose was taken as the geometrical average over item.

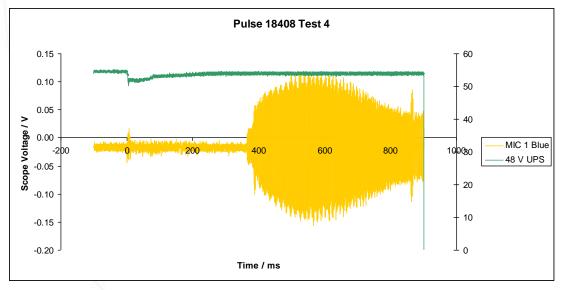
Equipment	Required Neutron Fluence / cm ⁻²	Average Received Neutron Fluence / cm ⁻²	Range of Fluence	Required γ Dose / Gy	Average Received γ Dose / Gy	Range of Dose
CIDAS [®] Detectors / Speakers / Lamp Modules	2.0x10 ¹³	2.6x10 ¹³	99 – 178%	200	53.8	20 – 39%
CIDAS [®] MkXI Main Panel & UPS	5.0x10 ¹⁰	5.8x10 ¹⁰	92 – 152%	0.50	0.24	42 – 58%

Test Methodology - Monitoring

babcoc

trusted to deliver

- Multiple storage scope channels
- Measurement of component current draw
- Microphones to convert alarm sounds to signals


babcock trusted to deliver "

- Reliable monitoring of component functionality:
 - In-cell video equipment
 - Connection to out-cell sounders
 - Use of bulb loads on amplifiers
- 2 individual pulses used for CIDAS[®] MkXI components
- Component functionality was monitored before, during and for 40 minutes after each pulse

Radiation Tolerance Testing

- time for speakers to sound from the initiation of the criticality pulse
- 48V output of the UPS
- The system was subjected to two pulses
- All tests were successful

babcock trusted to deliver

Test Results – Pulse 1

- CIDAS[®] MkXI with 2 MkX and 1 MkXI detectors.
- Success:
 - Criticality alarm sounded with no audible / measurable break
 - NAWLs lit constantly with no visible / measurable break
 - KOWLs lit constantly with no visible / measurable break
 - No break in UPS supply
- Issues:
 - Detectors had 'pre-tripped'
 - Detector Zone Activated not annunciated
 - UPS fell back to battery for < 6 mins after pulse

Test Results – Pulse 2

- CIDAS[®] MkXI with 2 MkXI and 1 MkX (LND) detectors.
 Success:
 - System tripped into alarm within 380ms of criticality
 - Criticality alarm sounded immediately
 - NAWLs lit immediately
 - KOWLs lit immediately
 - No break in UPS supply
- Issues:
 - Detector Zone Activated not annunciated
 - UPS fell back to battery supply for ~20s after pulse

Conclusions

- The following CIDAS[®] MkXI components successfully passed the testing:
 - Main CIDAS[®] MkXI Panel
 - KOWL driver
 - Erskine 48Vdc UPS panel
 - MkXI detector (except open collector output)
 - Detectors with replacement LND GM tubes
 - Ametek and Omniflex Annunciators
- CIDAS[®] MkXI passed its radiation tolerance testing

