Comparison of the Performance of Various Correlated Fission Multiplicity Monte Carlo Codes

J. Arthur^{1,2}, R. Bahran¹, J. Hutchinson¹, M. Rising¹, S. Pozzi²

¹Los Alamos National Laboratory

²University of Michigan

LA-UR-16-28532

Outline

- I. Introduction
- II. Methods
- III. Results
 - A. Multiplicity distributions

0

- B. Code comparisons
- IV. Conclusions

INTRODUCTION

Motivation

- Accurate prediction of special nuclear material (SNM) measurements
 Using Monte Carlo (MC) radiation transport codes
- Historically: uncorrelated fission emissions
- Reality: correlations in time, energy, and multiplicity [1]
- This work: investigates the performance of various current MC codes with correlated physics of fission

Fission multiplicity distributions

• P(v) have large impact on correlated neutron results

 \circ Probability of emission of v neutrons in a single fission

Fig. 1. Example multiplicity distribution.

MC codes

- Monte Carlo N-Particle Transport code (MCNP)
- MCNP®6 [2]
 - Default: bounded integer treatment
 - Optional: FMULT card to input multiplicity distributions/parameters
- MCNP®6/FREYA [3,4]
 - FREYA fission event generator produces neutrons and gives to MCNP for transport
- MCNPX-PoliMi [5]
 - Choose from a few different built-in multiplicity distributions

Fission event generator (FEG)

• Uses:

- Fission fragment mass and kinetic energy distributions
- Unbounded statistical evaporation models
- Conservation of energy and momentum
- Generates number, energy, and direction of neutrons released by each fission event [3]

Fig. 2. Representation of a fission event.

LANL BeRP benchmark

- Los Alamos National Laboratory (LANL) bare plutonium metal (BeRP ball) benchmark measurement
- 4.5 kg sphere of α-phase Pu [6]
- Original MCNP input file adjusted t

METHODS

Simulation geometry

- Bare BeRP ball (bare configuration only) with NPOD detectors
 - LANL ³He multiplicity detector
 - \circ 15 ³He neutron detectors in polyethylene moderator
- 50 cm detector distance

This model came from the evaluation FUND-NCERC-PU-HE3-MULT-001

10

Fig. 4. BeRP benchmark bare case geometry (VisEd)

List-mode data

Only time and detector of interaction

- MCNP®6 and MCNP®6/FREYA: obtained from particle track (PTRAC) output files
- MCNPX-PoliMi: obtained from collision data file
- Feynman histogram: list-mode data binned into multiplets according to specified time widths (Momentum [7])
- Singles rate (R₁): detector count rate
- Doubles rate (R₂): frequency of detection of two neutrons from the same fission chain

Data processing

Table I. Variable definitions [8].

τ	Specified time width	
4		10
	n^{th} order reduced factorial moment	ΙZ

P(v) comparisons

- Differences in Feynman histograms, R₁, and R₂ are expected to be sensitive to differences in underlying multiplicity distributions
- MCNP®6 and MCNPX-Polimi: Lestone [9], Santi [10], Terrell [11]

 Specified as CDF or Gaussian mean and width
 Induced fission means taken from ENDF/B-VII.1
- MCNP®6/FREYA: FEG
 - Extracted from PTRAC file
 - $\circ\,$ Frequency distribution of $\nu\,$

Multiplicity distributions

RESULTS

Induced fission

- 2 MeV incident neutron energy
 - Average energy of neutrons causing fission in the bare BeRP is 1.98 MeV
- MCNP®6/FREYA: simulated 2 MeV neutron source hitting a thin film of pure ²³⁹Pu

Fig. 5. Induced fission multiplicity distributions (at 2 MeV) incident neutron energy.

4 E

Code	MCNP [®] 6	MCNPX- PoliMi	MCNP [®] 6/FREYA
\overline{v}	3.178 ⁴	3.178 ⁴	3.128
0 Lestone	1.140 ¹ Terrell ⁴ ENDF	1.140 ³	1.057

Table II. Induced fission multiplicity distribution parameters.

Spontaneous fission

- In general:
- R₁ expected to change only with mean of P(v)
- R₂ and Feynman histogram expected to change with both mean and width

Table III. Spontaneous fission multiplicity distribution parameters.

Code	MCNP®6	MCNPX-PoliMi	MCNP [®] 6/FREY
			A
\overline{v}	2.151 ¹	2.093 ²	2.109
\overline{v}	1.151 ¹	1.199 ²	0.942

Fig. 6. Spontaneous fission multiplicity distributions.

ν

16

¹Lestone ²Santi

Code comparisons

RESULTS

Feynman histogram

Fig. 7. Comparison of Feynman histograms at 1000 μs time width.

Singles/doubles rates

- R₁ and R₂ from MCNP[®]6 and MCNPX-PoliMi are within 2-4% of the measured results
- MCNP[®]6/FREYA R₁ show <1% deviation
 - Doubles show 10% deviation.

alongside both the benchmark measured results and MCNP[®]6 default bounded integer treatment.

CONCLUSIONS

Comparisons

21

Conclusions

- Preliminary comparisons of correlated physics Monte Carlo codes show similar performance
- Discrepancies in correlated neutron results are more pronounced when discrepancies exist in the multiplicity distributions used

 \mathbf{n}

- Future work:
 - $_{\odot}$ Investigate other MC codes with correlated physics of fission (CGMF)
 - Input multiplicity distributions from other codes into MCNP[®]6

Acknowledgements

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number(s) DE-NA0002576. This work was supported in part by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

References

- 1. C. WAGEMANS, *The Nuclear Fission Process*, CRC Press, Boca Raton (1991).
- 2. J.T. GOORLEY et. al., "Initial MCNP6 Release Overview," *Nuclear Technology*, 180, 298-315 (2012).
- 3. C. HAGMANN et. al., "FREYA—A New Monte Carlo Code for Improved Modeling of Fission Chains," *IEEE Transactions on Nucl. Sci.*, 60, 545-549 (2013).
- 4. M.E. RISING et. al., "Correlated Neutron and Gamma-Ray Emissions in MCNP6," LA-UR-14-24979 (2014).
- 5. S. A. POZZI et. al., "MCNPX-PoliMi for Nuclear Nonproliferation Applications," *Nuclear Instruments and Methods in Physics Research Section A*, 694, 119-125 (2012).
- 6. B. RICHARD et. al., "Nickel-Reflected Plutonium-Metal-Sphere Subcritical Measurements," International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC/(95)03/I, FUND-NCERC-PU-HE3-MULT-001.
- 7. M. SMITH-NELSON, "Momentum: version 0.36.3," LANL Software, March 29, 2015.
- 8. J. HUTCHINSON et. al., "Estimation of Uncertainties for Subcritical Benchmark Measurements," ICNC 2015, Charlotte NC, 2015.
- 9. J.P. LESTONE, "Energy and Isotope Dependence of Neutron Multiplicity Distributions," LA-UR-05-0288.
- 10. P. SANTI, M. MILLER, "Reevaluation of Prompt Neutron Emission Multiplicity Distributions for Spontaneous Fission," *Nucl. Sci. and Eng.*, 160, 190-199 (2008).

N

11. J. TERRELL, "Distributions of Fission Neutron Numbers," *Physical Review*, 108, 783-789 (1957).