Measurements of the Fission Neutron Spectrum Using Threshold Activation Detectors Final Design

November 2016

ANS Winter Meeting, Las Vegas, NV

Theresa Cutler, John Bounds, Travis Grove, Dave Hayes, Jesson Hutchinson, Bill Myers, Rene Sanchez, Jessie Walker, Morgan White

Los Alamos National Laboratory

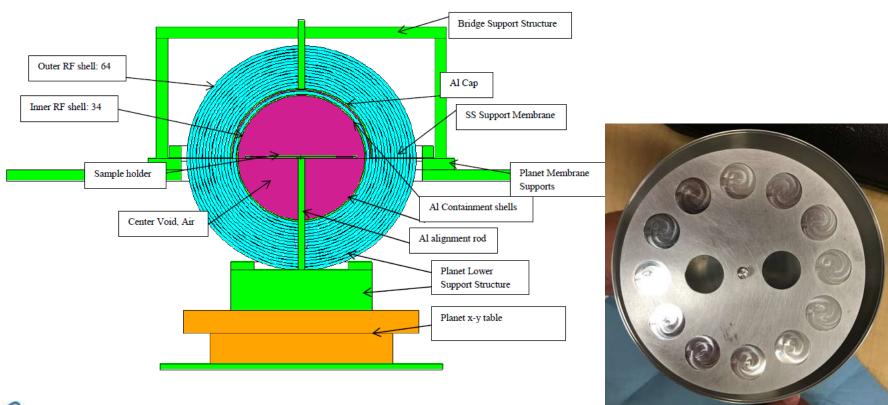
Overview of the Experiment

- Purpose: Determine the prompt fission neutron spectrum (PFNS) of U-235
 - The fidelity PFNS above 10 MeV is known to be questionable
- Rocky Flats shells, with a hollow internal cavity
 - ~93 wt. % ²³⁵U
 - Shells 33-64
- Use threshold activation detectors in a critical HEU system
- Designed on Planet critical assembly machine

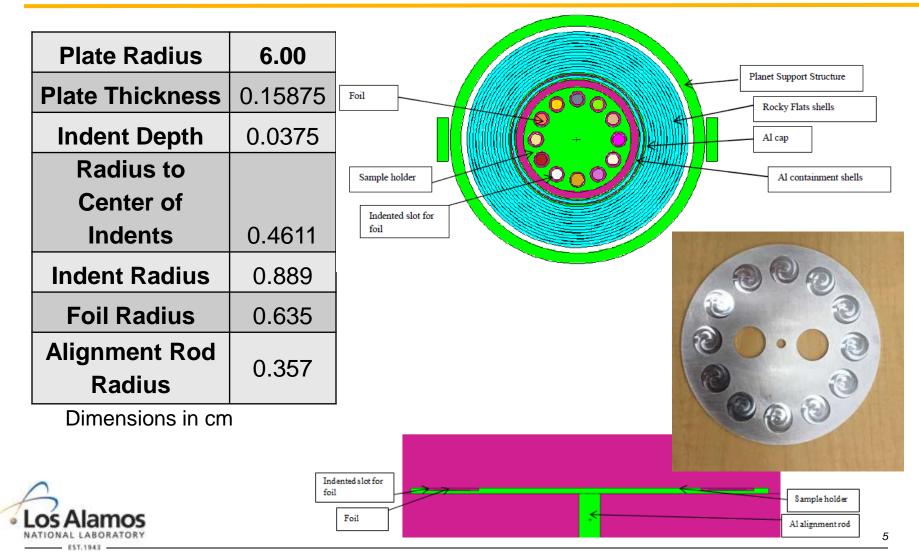
A photograph of a subset of the Rocky Flats Uranium shells

Physical Characteristics of Rocky Flats Shells 33-64

Average Thickness (cm)	0.32
Average Gap Thickness (cm)	0.0098
Average Density (g/cm3)	18.65
Shell 33 IR (cm)	7.006
Shell 64 OR (cm)	12.336
Total Mass of HEU Shells (kg)	114.3
Mass of HEU shells above Support Membrane (kg)	54.15



Overview of Model


Simulations performed in MCNP6® using ENDF/B-VII cross sections

Green=Aluminum, Orange=Steel, Teal= Uranium, Pink=Air.

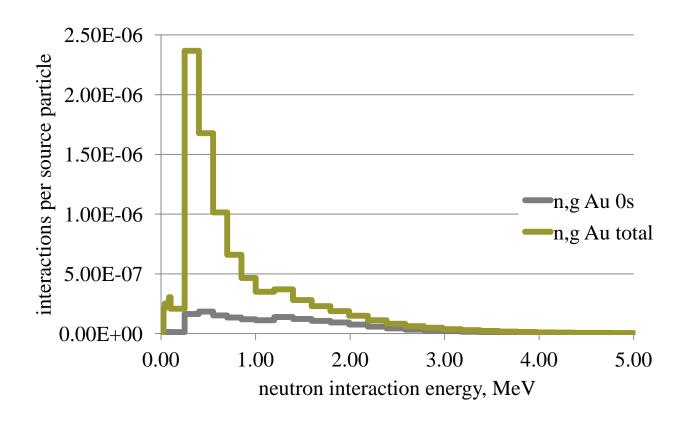
The Sample Holder

Description of MCNP6® Simulations

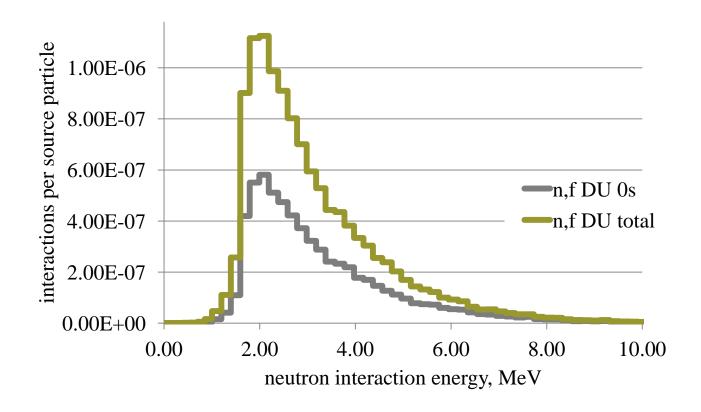
- ENDF/B-VII cross sections
- Foils modeled as pure samples with naturally occurring isotopic distributions
 - Based on previous examination of foils from Shieldwerx
- Composition of Rocky Flats Shells and Planet structure come from ICSBEP benchmarks
 - Density of Rocky Flats shells conserve mass which is necessary because the lateral holes were neglected
 - Consistent with other reports
- Includes 11 of the candidate foil materials which cover the full energy range of interest
- Reaction rate tallies segmented into 130 discrete energy bins, spanning 0 to 21
 MeV
 - Aim to find mean neutron interaction energy (E_50)
- Keff=1.00833 ± 0.00003

Foil Materials and Activation Reactions

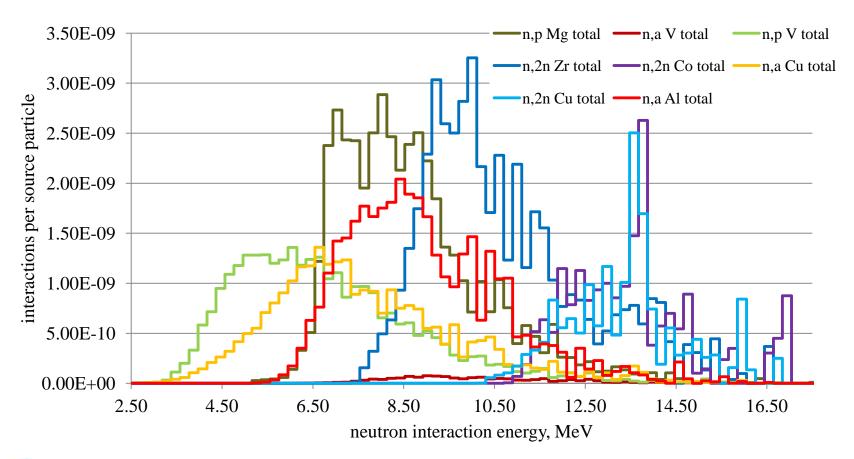
Foil Material	Foil thickness, mil	Isotope of Interest	% Natural Abundance of Isotope of Interest	Reaction	Cross Section, [b]	E_50 [MeV]	Nucleus	Half-life
DU	5	238U	99	238U(n,f)FP	0.31539	2.73	/	/
Iron	5	54Fe	5.85	54Fe(n,p)54Mn	0.08692	4.23	54Mn	2.58 h
Nickel	10	58Ni	68.0769	58Ni(n,p)58Co	0.118	3.94	58Co	2.73 y
Copper	10	63Cu	69.17	63Cu(n,a)60Co	0.000689	7.24	60Co	9.67 m
	10	65Cu	69.17	65Cu(n,2n)64Cu	0.000689	12.64	64Cu	14.9 h
Aluminum	10	27AI	100	27Al(n,a)24Na	0.001017	8.40	24Na	9.462 m
Gold	1	197Au	100	197Au(n,γ)198Au	0.078	0.75	198Au	9.6 h
Gold with 4 mil Cd cover	1	197Au	100	197Au(n,γ)198Au	0.078	0.75	198Au	9.6 h
	1	197Au	100	197Au(n,2n)196Au	0.00051	10.61	196Au	12.7 h
Cobalt	2	59Co	100	59Co(n,α)56Mn	0.000222	8.36	56Mn	70.86 d
Vanadium	2	51V	99.75	51V(n,p)51Ti	0.000649	6.44	51Ti	43.67 h
	2	51V	99.75	51V(n,α)48Sc	0.000039	9.10	48Sc	14.9 h
Magnesium	5	24Mg	78.99	24Mg(n,p)24Na	0.002	8.25	24Na	13.11 h
Zirconium	5	90Zr	51.45	90Zr(n,2n)89Zr	0.000221	14.41	89Zr	249 d
Titanium	5	46Ti	8.25	46Ti(n,p)46Sc	0.01409	5.90	46Sc	83.7 d


Foil Selection

- All reactions come from International Reactor Dosimetry and Fusion File (IRDFF)
 v.1.03 Cf-252 Spontaneous Fission Library
- Prior experience with reaction rate foils
- Shieldwerx Catalog
- Full Energy Spectrum with Mean Interaction Energy up to 13 MeV
 - Thermal/epithermal range
 - High energy range
- Considered effects of competing n,γ low energy interactions
- Percent of interactions from unscattered neutrons
- High energy interactions primarily (n,2n); (n,p); (n,α)



Gold Relative Reaction Rate


DU Relative Reaction Rate

Threshold Reactions

Acknowledgement

This work was supported by the Department of Energy Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

