Adjoint-Based Sensitivity and Uncertainty Analysis for Density and Composition: <u>A User's Guide</u>

Jeffrey A. Favorite Monte Carlo Codes, Methods, and Applications Group (XCP-3) Los Alamos National Laboratory

> Brian C. Kiedrowski Nuclear Engineering and Radiological Sciences University of Michigan

Christopher M. Perfetti Radiation Transport Group, Reactor and Nuclear Systems Division Oak Ridge National Laboratory

> American Nuclear Society Winter Meeting Las Vegas, NV November 6-10, 2016 UNCLASSIFIED

Slide 1 of 17

Motivation for this paper

- You are using MCNP or SCALE for benchmark modeling and uncertainty analysis.
- These codes have powerful adjoint-based sensitivity capabilities.
- *Are you using them?*

Acknowledgment

 Zoltán Perkó Physics Research Group, Dept. of Radiation Oncology Massachusetts General Hospital/Harvard Medical School Boston, Massachusetts

Z. Perkó et al., "Ambiguities in the Sensitivity and Uncertainty Analysis of Reactor Physics Problems Involving Constrained Quantities," *Nucl. Sci. Eng.*, **180**, 345-377 (2015).

Slide 2 of 17

Why do we care about sensitivities?

• The uncertainty in variable k due to uncertainty in random variable x_1 is

$$u_k^2 = \left(\frac{\partial k}{\partial x_1}u_{x_1}\right)^2$$

• Define the *first-order sensitivity*

$$S_{k,x_1} \equiv \frac{x_{1,0}}{k_0} \frac{\partial k}{\partial x_1} \bigg|_{x_1 = x_{1,0}}$$

• The relative uncertainty in response *k* due to the relative uncertainty in random variable x_1 is

$$\left(\frac{u_k}{k_0}\right)^2 = S_{k,x_1}^2 \left(\frac{u_{x_1}}{x_{1,0}}\right)^2$$

- Other notation to be aware of:
 - + Some papers define the derivative $\partial k/\partial x_1$ as the *absolute sensitivity* and our S_{k,x_1} as the *relative sensitivity*.

Slide 3 of 17

Density sensitivities

• The relative sensitivity of k to the atom density N_j of nuclide j (specified as an element or isotope) in a material is

$$S_{k,N_j} \equiv \frac{N_{j,0}}{k_0} \frac{\partial k}{\partial N_j} \bigg|_{N_j = N_{j,0}}$$

• We can write this in terms of the mass density ρ_j of nuclide *j* in a material as

or the sensitivity with respect to the atom density is equal to the sensitivity with respect to the mass density.

Slide 4 of 17

Equivalence of density sensitivities

• The total atom density N and the total mass density ρ of the material are $N = \sum_{j=1}^{n} N_{j}$ and

 $\rho = \sum_{j=1}^{J} \rho_j$, respectively (where *J* is the number of nuclides in the material).

• The sensitivities to individual atom or mass densities can be summed to obtain the sensitivity to the total atom or mass density:

$$S_{k,N} = \sum_{j=1}^{J} S_{k,N_j} = \sum_{j=1}^{J} S_{k,\rho_j} = S_{k,\rho}.$$

• The total macroscopic cross section Σ_t of a material is $\Sigma_t = \sum_{j=1}^J \Sigma_{t,j}$, where $\Sigma_{t,j} = N_j \sigma_{t,j}$ and

 $\sigma_{t,j}$ is the microscopic total cross section of nuclide *j*.

• Therefore

$$S_{k,\Sigma_t} = \sum_{j=1}^J S_{k,\Sigma_{t,j}} = S_{k,\rho} = S_{k,N}.$$

• Second- and higher-order sensitivities are not additive.

LOS Alamos NATIONAL LABORATORY EST. 1943

Slide 5 of 17

Equivalence of weight fraction and density sensitivities

• Consider the sensitivity S_{k,w_j} of k to the weight fraction of nuclide j, $w_j \equiv \rho_j / \rho$:

$$\begin{split} S_{k,w_{j}} &\equiv \frac{w_{j,0}}{k_{0}} \frac{\partial k}{\partial w_{j}} \bigg|_{w_{j}=w_{j,0}} = \frac{w_{j,0}}{k_{0}} \frac{\partial k}{\partial \rho_{j}} \bigg|_{\rho_{j}=\rho_{j,0}} \frac{\partial \rho_{j}}{\partial w_{j}} \bigg|_{w_{j}=w_{j,0}} \\ &= \frac{\rho_{j,0}}{k_{0}\rho_{0}} \frac{\partial k}{\partial \rho_{j}} \bigg|_{w_{j}=w_{j,0}} \rho_{0} = \frac{\rho_{j,0}}{k_{0}} \frac{\partial k}{\partial \rho_{j}} \bigg|_{\rho_{j}=\rho_{j,0}} = S_{k,\rho_{j}}, \end{split}$$

demonstrating that the sensitivity to the weight fraction of nuclide j is also equal to the sensitivity to the mass density of nuclide j, i.e.,

$$S_{k,N_j} = S_{k,\rho_j} = S_{k,w_j}.$$

• Although the weight fractions are constrained, the sensitivity S_{k,w_i} is unconstrained!

Slide 6 of 17

How to compute density sensitivities: MCNP 6.1.1

- Uses iterated fission probability.
- Automatically calculates sensitivity coefficients for all nuclides.

KOPTSblocksize = 5KSENnxscell = c1 c2 ... MT=-1

- (• Sensitivities by cell are new in MCNP 6.1.1.)
- Energy bins can be specified.
- MCNP treats an $S(\alpha,\beta)$ table as a separate nuclide.

+ Using MT=-1 on the KSEN card causes the $S(\alpha,\beta)$ contribution to be added to the total reaction sensitivity for the associated nuclide.

+ For isotopes and materials with no $S(\alpha,\beta)$ component, using MT=-1 will give the same result as MT=1 (or no specified reaction).

• Brian Kiedrowski's experience has been that a blocksize of 5 is almost always adequate and more efficient than the default of 10.

Slide 7 of 17

How to compute density sensitivities: SCALE 6.2

• Uses the TSUNAMI-3D sequence.

• Automatically calculates energy-dependent sensitivity coefficients for all materials, nuclides, and reactions in a system.

- Automatically accounts for any $S(\alpha,\beta)$ effects present for materials in the model.
- User chooses iterated fission probability (cet=2) or CLUTCH (cet=1).
- Example of TSUNAMI-3D input cards for CLUTCH:

```
read parameter
cet=1 cfp=10 cgd=2
...
read gridGeometry 2
    title="Mesh for CLUTCH calc."
    xLinear 60. -60. 60.
    yLinear 60. -60. 60.
    zLinear 120. -120. 120.
end gridGeometry
```

cfp is the number of latent generations; it is MCNP's blocksize plus 2.

Slide 8 of 17

How to compute density sensitivities: Central difference

• You can always use a central difference:

$$\begin{split} S_{k,N_{j}} \approx & \frac{N_{j,0}}{k_{0}} \Biggl(\frac{k(N_{j,+}) - k(N_{j,-})}{N_{j,+} - N_{j,-}} \Biggr) \\ &= & \frac{N_{j,0}}{k_{0}} \Biggl(\frac{k(N_{j,0} + \Delta N_{j}) - k(N_{j,0} - \Delta N_{j})}{2\Delta N_{j}} \Biggr), \end{split}$$

where $N_{j,\pm} = N_{j,0} \pm \Delta N_j$.

• It is important to choose the perturbation ΔN_j carefully!

+ Small enough that the points $k(N_{j,-})$, $k(N_{j,0})$, and $k(N_{j,+})$ lie approximately on the $(\partial k/\partial N_j)|_{N_j=N_{j,0}}$ tangent line.

+ Large enough that the difference $k(N_{j,+}) - k(N_{j,-})$ can be calculated accurately, and, if a Monte Carlo code is used, with a small uncertainty.

- This method estimates the same S_{k,N_i} that the adjoint methods do.
 - + Therefore, there is no reason to do it!

Slide 9 of 17

• Recall
$$S_{k,\rho} = \sum_{j=1}^{J} S_{k,N_j}$$
.

• The relative uncertainty in *k* is

$$\left(\frac{u_k}{k_0}\right)^2 = \frac{1}{k_0^2} \left(\frac{\partial k}{\partial \rho} u_\rho\right)^2 = S_{k,\rho}^2 \left(\frac{u_\rho}{\rho_0}\right)^2,$$

not accounting for correlations among mass, density, and volume.

• If the part mass and density are measured independently and have independent uncertainties, the relative uncertainty in *k* that considers constraints among mass, density, and volume by adjusting the part volume is

$$\left(\frac{u_k}{k_0}\right)^2 = \left[\frac{V_0}{k_0}\left(\frac{\partial k}{\partial V}\right)\right]^2 \left(\frac{u_m}{m_0}\right)^2 + \left[S_{k,\rho} - \frac{V_0}{k_0}\left(\frac{\partial k}{\partial V}\right)\right]^2 \left(\frac{u_\rho}{\rho_0}\right)^2$$

• The derivative of *k* with respect to volume is

$$\frac{\partial k}{\partial V} = \sum_{n=1}^{N} \left(\frac{\partial k}{\partial r_n} \right) / \sum_{n=1}^{N} \left(\frac{\partial V}{\partial r_n} \right)$$

Slide 10 of 17

Using the sensitivities: Trace elements or impurities specified by range

- Subscript *r* represents the "range" element and *b* represents the "balance" element.
- This equation can be derived in several ways, but the most straightforward is Perkó's control parameter adjustment:

$$S_{k,w_r}^{CPA} = S_{k,w_r} - \frac{W_{r,0}}{W_{b,0}} S_{k,w_l}$$

- The relative uncertainty is due to the uncertainty in the weight fraction of nuclide *r* is $\left(\frac{u_k}{k_0}\right)^2 = \left(S_{k,w_r}^{CPA}\right)^2 \left(\frac{u_{w_r}}{w_{r,0}}\right)^2 = \left(\frac{1}{w_{r,0}}S_{k,N_r} \frac{1}{w_{b,0}}S_{k,N_b}\right)^2 u_{w_r}^2$
- Note that u_{w_r} is the absolute uncertainty and u_{w_r}/w_r is the relative uncertainty.

Slide 11 of 17

Using the sensitivities: Part isotopics

- *Isotopics* refers to the composition of the major constituent of a part, typically the fuel.
- If there are *I* isotopes comprising the constituent of interest, then $w_F \equiv \sum_{i=1}^{I} w_i$ is the total weight fraction of the constituent of interest in the material.
- Assume that the mass density of the material is unchanged when the composition is perturbed.
- If the rest of the nuclides' weight fractions are renormalized to maintain the constraint when nuclide *i* is perturbed, the constrained sensitivity of nuclide *i* is

$$S_{k,w_i}^{PN} = \frac{w_{F,0}S_{k,N_i} - w_{i,0}S_{k,N_F}}{w_{F,0} - w_{i,0}} \quad \text{(Partial Normalization)}$$

• If *all* of the nuclides' weight fractions are renormalized to maintain the constraint when nuclide *i* is perturbed, the constrained sensitivity of nuclide *i* is

$$S_{k,w_b}^{FN} = \frac{S_{k,N_b} - w_{b,0}S_{k,N}}{1 - w_{b,0}} \qquad \text{(Full Normalization)}$$

• The relative uncertainty due to the uncertainty in the weight fraction of nuclide *i* is

Slide 12 of 17

Using the sensitivities: Balance element specified by range

• If the weight fraction of the balance element is perturbed and the other weight fractions are renormalized, the constrained sensitivity is

$$S_{k,w_b}^{PN} = \frac{S_{k,N_b} - w_{b,0}S_{k,N}}{1 - w_{b,0}} \qquad \text{(Partial Normalization)}$$

• If the weight fraction of the balance element is perturbed and *all* the weight fractions are renormalized, the constrained sensitivity is

 $S_{k,w_b}^{\tilde{F}N} = S_{k,N_b} - w_{b,0}S_{k,N}$ (Full Normalization)

• The relative uncertainty due to the uncertainty in the weight fraction of nuclide *b* is

$$\left(\frac{u_k}{k_0}\right)^2 = \left(S_{k,w_b}^C \frac{u_{w_b}}{w_{b,0}}\right)^2$$

Slide 13 of 17

Using the sensitivities: Full or partial normalization?

- Perkó showed that partial normalization may give erroneous results for uncertainties when the covariances among the measured weight fractions are known precisely and therefore the covariance matrix is properly normalized.
- However, in most cases, the difficulty is that the covariances are *not* known, and the covariance matrix is *not* properly normalized.
- In such cases, it is impossible to know which constrained sensitivities need to be used.
- You should compute uncertainties using partial *and* full normalization. Then pick one.

Slide 14 of 17

- A bare, homogeneous cylindrical reactor consisting of fuel similar to that used in the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory.
- Height and radius are 240 cm and 60 cm, respectively.

There is a whole session on TREAT Thursday morning.

- The atom density and the mass density of the fuel are 0.113705 atoms/b·cm and 2.27 g/cm³, respectively.
- Composition of the fuel:

Nuclide	Atom Density	Weight
	(atoms/b·cm)	Fraction
$^{1}\mathrm{H}$	1.13694E-4	8.38215E-5
$^{10}\mathrm{B}$	5.68468E-7	4.16390E-6
C (nat.)	1.13579E-1	9.97955E-1
²³⁵ U	1.05735E-5	1.81803E-3
²³⁸ U	7.95855E-7	1.38591E-4

- In MCNP, the $S(\alpha,\beta)$ table grph.20t was associated with the fuel.
- In SCALE, the cross section table for carbon in graphite was associated with natural carbon, and the sensitivities were calculated using the CLUTCH method.

Slide 15 of 17

Sample problem results

is 2.8%).

• Sensitivity to constituents (S_{k,N_i}) :

+ Completely different Monte Carlo codes, different cross section data processing tools, and slightly different cross section data were able to produce sensitivity coefficients that agree well! + Within $\sim 3\sigma$ and within $\sim 1\%$ (except for C, where the difference

Nuclide	MCNP	SCALE
$^{1}\mathrm{H}$	$4.0059E-3 \pm 4.37\%$	$4.0194E-3 \pm 1.63\%$
$^{10}\mathbf{B}$	$-2.0248E-1 \pm 0.02\%$	$-2.0235E-1 \pm 0.00\%$
C (nat.)	$5.9836\text{E-1} \pm 0.46\%^{(a)}$	$5.8209E-1 \pm 1.58\%$
²³⁵ U	$3.5071E - 1 \pm 0.04\%$	$3.5032E-1 \pm 0.01\%$
²³⁸ U	$-2.5392E-3 \pm 0.50\%$	$-2.5494E-3 \pm 0.14\%$
$S(\alpha,\beta)$	$2.3217E-1 \pm 0.82\%$	$N/A^{(b)}$

(a) Includes the $S(\alpha,\beta)$ sensitivity.

(b) Not applicable— $S(\alpha,\beta)$ scattering is not calculated separately in SCALE.

• Sensitivities to fuel density and nonfissionable composition:

•	L	
Adjoint ^(a)	Central Difference ^(b)	
$7.4806E - 1 \pm 0.37\%$	$7.5193E - 1 \pm 0.38\%$.
$3.9556E - 3 \pm 4.43\%$	$4.0767 \text{E-}3 \pm 0.70\%$	+ Adjoint uncertainties are estimated
$-2.0248E - 1 \pm 0.02\%$	$-2.0457E-1 \pm 0.01\%$	estimated.
$2.2517E+3 \pm 1.96\%$	$2.2503E+3 \pm 0.06\%$	+ Note the large difference
$1.9851E-1 \pm 1.96\%$	$1.9860E - 1 \pm 0.14\%$	between partial and full
	Adjoint(a) $7.4806E-1 \pm 0.37\%$ $3.9556E-3 \pm 4.43\%$ $-2.0248E-1 \pm 0.02\%$ $2.2517E+3 \pm 1.96\%$ $1.9851E-1 \pm 1.96\%$	Adjoint(a)Central Difference(b) $7.4806E-1 \pm 0.37\%$ $7.5193E-1 \pm 0.38\%$ $3.9556E-3 \pm 4.43\%$ $4.0767E-3 \pm 0.70\%$ $-2.0248E-1 \pm 0.02\%$ $-2.0457E-1 \pm 0.01\%$ $2.2517E+3 \pm 1.96\%$ $2.2503E+3 \pm 0.06\%$ $1.9851E-1 \pm 1.96\%$ $1.9860E-1 \pm 0.14\%$

(a) Using MCNP results.

(b) Using MCNP; this is a constrained central difference.

Slide 16 of 17

- We want you to perform more efficient sensitivity analyses for material compositions!
 - + Use adjoint methods to compute nuclide density sensitivities.
 - + Combine those appropriately to compute constrained weight fraction sensitivities.
- We have a forthcoming paper (with Zoltán Perkó) in *Nuclear Science and Engineering* (scheduled for February).
- For more on these issues, see

Z. Perkó et al., "Ambiguities in the Sensitivity and Uncertainty Analysis of Reactor Physics Problems Involving Constrained Quantities," *Nucl. Sci. Eng.*, **180**, 345-377 (2015).

Slide 17 of 17

