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Motivation for this paper 
 
 
• You are using MCNP or SCALE for benchmark modeling and uncertainty analysis. 
 
• These codes have powerful adjoint-based sensitivity capabilities. 
 
• Are you using them? 
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Why do we care about sensitivities? 
 
 
• The uncertainty in variable k due to uncertainty in random variable 1x  is 
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• Define the first-order sensitivity  
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• The relative uncertainty in response k due to the relative uncertainty in random variable 1x  
is 
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• Other notation to be aware of: 

+ Some papers define the derivative 1xk   as the absolute sensitivity and our 
1,xkS  as 

the relative sensitivity. 
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Density sensitivities 
 
 
• The relative sensitivity of k to the atom density Nj of nuclide j (specified as an element or 
isotope) in a material is 
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• We can write this in terms of the mass density ρj of nuclide j in a material as 
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or the sensitivity with respect to the atom density is equal to the sensitivity with respect to the 
mass density. 
 

Recall 
j

Aj
j A

N
N


  
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Equivalence of density sensitivities 
 
 

• The total atom density N and the total mass density ρ of the material are 



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 , respectively (where J is the number of nuclides in the material). 

 
• The sensitivities to individual atom or mass densities can be summed to obtain the 
sensitivity to the total atom or mass density: 
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• The total macroscopic cross section Σt of a material is 
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jt,  is the microscopic total cross section of nuclide j. 
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• Second- and higher-order sensitivities are not additive. 
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Equivalence of weight fraction and density sensitivities 
 
 
• Consider the sensitivity 

jwkS ,  of k to the weight fraction of nuclide j,  jjw  :  
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demonstrating that the sensitivity to the weight fraction of nuclide j is also equal to the 
sensitivity to the mass density of nuclide j, i.e.,  

jjj wkkNk SSS ,,,   . 
 
 
• Although the weight fractions are constrained, the sensitivity 

jwkS ,  is unconstrained! 
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How to compute density sensitivities: MCNP 6.1.1 
 
 
• Uses iterated fission probability. 
 
• Automatically calculates sensitivity coefficients for all nuclides. 
 
KOPTS   blocksize = 5 
KSENn   xs   cell = c1 c2 ... MT=-1 

 
(• Sensitivities by cell are new in MCNP 6.1.1.) 
 
• Energy bins can be specified. 
 
• MCNP treats an S(α,β) table as a separate nuclide.  

+ Using MT=-1 on the KSEN card causes the S(α,β) contribution to be added to the total 
reaction sensitivity for the associated nuclide.  
+ For isotopes and materials with no S(α,β) component, using MT=-1 will give the same 
result as MT=1 (or no specified reaction). 

 
• Brian Kiedrowski’s experience has been that a blocksize of 5 is almost always adequate 
and more efficient than the default of 10. 
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How to compute density sensitivities: SCALE 6.2 
 
 
• Uses the TSUNAMI-3D sequence. 
 
• Automatically calculates energy-dependent sensitivity coefficients for all materials, 
nuclides, and reactions in a system.  
 
• Automatically accounts for any S(α,β) effects present for materials in the model. 
 
• User chooses iterated fission probability (cet=2) or CLUTCH (cet=1). 
 
• Example of TSUNAMI-3D input cards for CLUTCH: 

 
read parameter 
cet=1  cfp=10  cgd=2 
... 
read gridGeometry 2 
    title="Mesh for CLUTCH calc." 
    xLinear  60.  -60.  60. 
    yLinear  60.  -60.  60. 
    zLinear 120. -120. 120. 
end gridGeometry 

 

cfp is the number of latent 
generations; it is MCNP’s blocksize 
plus 2. 
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How to compute density sensitivities: Central difference 
 
 
• You can always use a central difference: 
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where jjj NNN  0,, .  
 
• It is important to choose the perturbation jN  carefully! 

+ Small enough that the points )( ,jNk , )( 0,jNk , and )( ,jNk  lie approximately on the 
 

0,jj NNjNk


  tangent line.  

+ Large enough that the difference )()( ,,   jj NkNk  can be calculated accurately, and, 
if a Monte Carlo code is used, with a small uncertainty. 

 
• This method estimates the same 

jNkS ,  that the adjoint methods do. 
 

+ Therefore, there is no reason to do it! 
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Using the sensitivities: Mass density 
 
 

• Recall 
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• The relative uncertainty in k is 
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not accounting for correlations among mass, density, and volume. 
 
• If the part mass and density are measured independently and have independent 
uncertainties, the relative uncertainty in k that considers constraints among mass, density, and 
volume by adjusting the part volume is 
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• The derivative of k with respect to volume is 
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Using the sensitivities: Trace elements or impurities specified by 
range 
 
 
• Subscript r represents the “range” element and b represents the “balance” element. 
 
• This equation can be derived in several ways, but the most straightforward is Perkó’s 
control parameter adjustment: 
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• The relative uncertainty is due to the uncertainty in the weight fraction of nuclide r is 
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• Note that 

rwu  is the absolute uncertainty and rw wu
r

 is the relative uncertainty. 
 



 Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

U N C L A S S I F I E D 
Slide 12 of 17 

Using the sensitivities: Part isotopics 
 
• Isotopics refers to the composition of the major constituent of a part, typically the fuel. 
 

• If there are I isotopes comprising the constituent of interest, then 



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i
iF ww

1

 is the total 

weight fraction of the constituent of interest in the material.  
 
• Assume that the mass density of the material is unchanged when the composition is 
perturbed.  
 
• If the rest of the nuclides’ weight fractions are renormalized to maintain the constraint 
when nuclide i is perturbed, the constrained sensitivity of nuclide i is 
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• If all of the nuclides’ weight fractions are renormalized to maintain the constraint when 
nuclide i is perturbed, the constrained sensitivity of nuclide i is 
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• The relative uncertainty due to the uncertainty in the weight fraction of nuclide i is 
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(Partial Normalization) 

(Full Normalization) 
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Using the sensitivities: Balance element specified by range 
 
 
• If the weight fraction of the balance element is perturbed and the other weight fractions are 
renormalized, the constrained sensitivity is 

0,

,0,,
, 1 b

NkbNkPN
wk w

SwS
S b

b 


  

 
• If the weight fraction of the balance element is perturbed and all the weight fractions are 
renormalized, the constrained sensitivity is 
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• The relative uncertainty due to the uncertainty in the weight fraction of nuclide b is 
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Using the sensitivities: Full or partial normalization? 
 
 
• Perkó showed that partial normalization may give erroneous results for uncertainties when 
the covariances among the measured weight fractions are known precisely and therefore the 
covariance matrix is properly normalized.  
 
• However, in most cases, the difficulty is that the covariances are not known, and the 
covariance matrix is not properly normalized.  
 
• In such cases, it is impossible to know which constrained sensitivities need to be used.  
 
• You should compute uncertainties using partial and full normalization. Then pick one. 
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Sample problem: TREAT fuel 
 
 
• A bare, homogeneous cylindrical reactor consisting of fuel similar to that used in the 
Transient Reactor Test Facility (TREAT) at Idaho National Laboratory. 
 
• Height and radius are 240 cm and 60 cm, respectively. 
 
• The atom density and the mass density of the fuel are 0.113705 atoms/b·cm and 2.27 g/cm3, 
respectively. 
 
• Composition of the fuel: 
 
 
 
 
 
 
 
• In MCNP, the S(α,β) table grph.20t was associated with the fuel.  
 
• In SCALE, the cross section table for carbon in graphite was 
associated with natural carbon, and the sensitivities were calculated 
using the CLUTCH method. 

 

Nuclide Atom Density 
(atoms/b·cm) 

Weight 
Fraction 

1H 1.13694E–4 8.38215E–5 
10B 5.68468E–7 4.16390E–6 

C (nat.) 1.13579E–1 9.97955E–1 
235U 1.05735E–5 1.81803E–3 
238U 7.95855E–7 1.38591E–4 

   
 

 

 keff 
MCNP 0.99347 ± 0.00002 
SCALE 0.99439 ± 0.00004 

  

 

There is a whole session on 
TREAT Thursday morning. 
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Sample problem results  
 
• Sensitivity to constituents (

jNkS , ): 
 

+ Completely different Monte 
Carlo codes, different cross section 
data processing tools, and slightly 
different cross section data were 
able to produce sensitivity 
coefficients that agree well!  
+ Within ~3σ and within ~1% 
(except for C, where the difference 
is 2.8%). 

 

• Sensitivities to fuel density and nonfissionable composition:  
 
 
+ Adjoint uncertainties are 
estimated.  
 
+ Note the large difference 
between partial and full 
normalization. 

 

Nuclide MCNP SCALE 
1H 4.0059E–3 ± 4.37% 4.0194E–3 ± 1.63% 
10B –2.0248E–1 ± 0.02% –2.0235E–1 ± 0.00% 

C (nat.) 5.9836E–1 ± 0.46%(a) 5.8209E–1 ± 1.58% 
235U 3.5071E–1 ± 0.04% 3.5032E–1 ± 0.01% 
238U –2.5392E–3 ± 0.50% –2.5494E–3 ± 0.14% 

S(α,β) 2.3217E–1 ± 0.82% N/A(b) 
   

(a) Includes the S(α,β) sensitivity. 
(b) Not applicable—S(α,β) scattering is not calculated separately 
in SCALE. 

 

S Adjoint(a) Central Difference(b) 
,kS  7.4806E–1 ± 0.37% 7.5193E–1 ± 0.38% 

CPA
wk H

S ,  3.9556E–3 ± 4.43% 4.0767E–3 ± 0.70% 
CPA

wk B
S ,  –2.0248E–1 ± 0.02% –2.0457E–1 ± 0.01% 

PN
wk C

S ,  2.2517E+3 ± 1.96% 2.2503E+3 ± 0.06% 
FN

wk C
S ,  1.9851E–1 ± 1.96% 1.9860E–1 ± 0.14% 

   

(a)  Using MCNP results. 
(b) Using MCNP; this is a constrained central difference. 
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Summary and Conclusions 
 
 
• We want you to perform more efficient sensitivity analyses for material compositions! 

+ Use adjoint methods to compute nuclide density sensitivities. 
+ Combine those appropriately to compute constrained weight fraction sensitivities. 

 
• We have a forthcoming paper (with Zoltán Perkó) in Nuclear Science and Engineering 
(scheduled for February). 
 
• For more on these issues, see 

Z. Perkó et al., “Ambiguities in the Sensitivity and Uncertainty Analysis of 
Reactor Physics Problems Involving Constrained Quantities,” Nucl. Sci. Eng., 
180, 345-377 (2015). 

 


