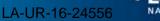


Evaluation of Engineering Controls Implemented to Mitigate Godiva Contamination

Joetta Goda, John Bounds, Dave Hayes

ANS Winter Conference 2016

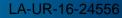
UNCLASSIFIED



Introduction

- Godiva bursts commenced in 2013 following reassembly and startup in 2012.
- Air sampling was performed during initial bursts
- There were 32 burst performed in 2014 (all without "Top Hat")
- Access to the building following a burst was made by personnel wearing respirators
- Despite these precautions, there was higher than desired levels of surface contamination and indication of potential personnel uptakes of uranium which prompted discussions of engineering controls.

UNCLASSIFIED


Slide 2

Airborne and Surface Contamination

- Airborne contamination consists of both uranium and fission products.
 - The uranium comes from the HEU fuel that has oxidized and is expelled from the surface of the core due to the shock wave generated during a burst.
 - Volatile fission products generated during the operation also become airborne. As they decay, non-volatile daughter products can be captured on air filters.
- Surface contamination consists primarily of HEU settling out of the air and onto surfaces in the building..

UNCLASSIFIED

Slide 3

Engineering Controls

- Passive Engineering Control--"Top Hat" cover to physically contain contamination and the
- Active Engineering Control--Air Filtration System (AFS). The AFS is a large HEPA filtered air collection system mounted with the intake adjacent to the area above the Godiva core.

LA-UR-16-24556

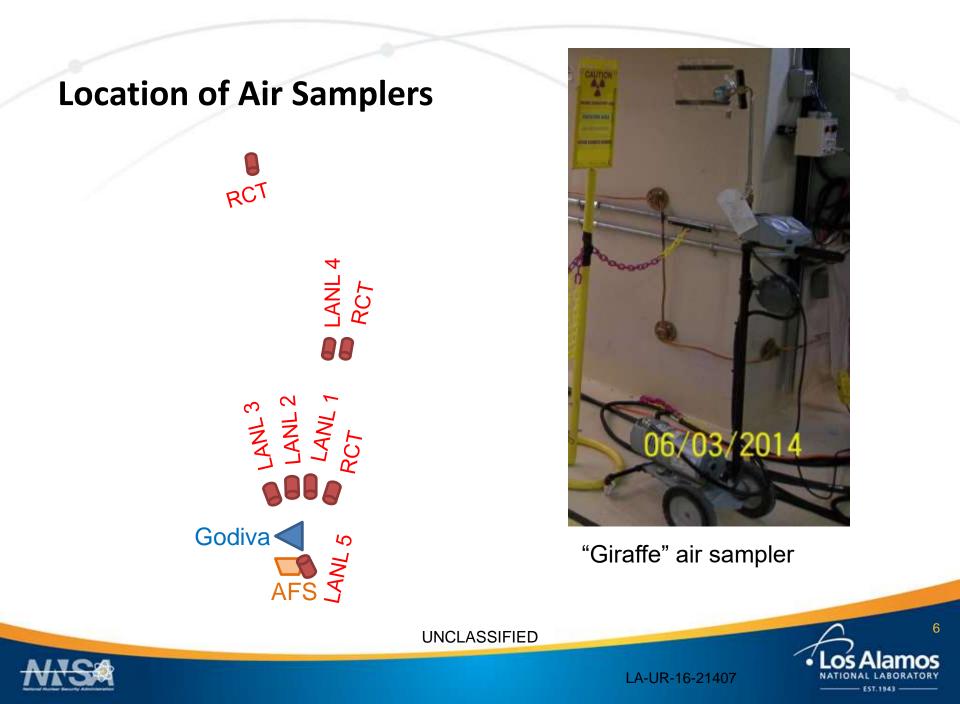
Slide 4

NISA

UNCLASSIFIED

Burst Info

- 9 bursts performed,
- Controls evaluated
 - Top Hat -- passive
 - Air Filtration System -- active
 - Both Controls Combined


	"60"	"150"	"200"
Top Hot and	#2000	#2002	#2003
Top Hat and AFS	24Sep15	27Oct15	280ct15
711 0	66 C	128 C	265 C
	#2004	#2005	#2006
Top Hat only	16Nov15	17Nov15	18Nov15
	62 C	155 C	269 C
	#2007	#2008	#2009
AFS Only	15Dec15	16Dec15	17Dec15
	53 C	130 C	197 C

LA-UR-16-21407

UNCLASSIFIED

Air Samplers, Location and Timing

1 meter from HCA (1 m from Godiva)

- LANL 1 ON at 30 min following burst, 2.5 cfm
- LANL 2 continuous, 2.5 cfm
- LANL 3 ON at 80 min following burst, 2.5 cfm
- RCT continuous, 2.5 cfm

Hotline (entrance to room)

- LANL 4 continuous, 2.5 cfm
- RCT continuous, 2.5 cfm

AFS Exhaust

• RCT – continuous, 2.5 cfm

AFS Filter (at top of AFS, facing Godiva)

• LANL 5 – continuous, 2.5 or 2.0 cfm

Air filters counted LANL count room (alpha spec and gamma spec) Counted later by NSTec RCTs (gross alpha/beta)

NISA

UNCLASSIFIED

Contamination Survey Results

• Numbers in red are the numbers used for Table 1

			THA60	THA150	THA250	TH60	TH150	TH250	A60	A150	A250
			Alpha	Alpha	Alpha	Alpha	Alpha	Alpha	Alpha	Alpha	Alpha
Group	Sample ID	Location	(dpm)	(dpm)	(dpm)	(dpm)	(dpm)	(dpm)	(dpm)	(dpm)	(dpm)
	A1	Top Hat (closest to AFS)	90	848	1834	239	243	1399	176000*	5000*	1000*
HCA	A2	Top Hat (away from AFS)	20	347	97	47	510	256	87000*	4000*	70000*
	A4	AFS Inlet Screen	43	340	4868	717	197	14000*	20000*	15000*	15000*
	A5	1 foot from assembly, each side (floor)	33	219	200	41	47	47	17	13	357
	A6	1 foot from assembly, each side (floor)	38	38	192	41	232	52	77	13	4
CA /flagers	A7	1 foot from assembly, each side (floor)	31	120	54	49	44	65	15	3	40
CA/floors	A9	2 m from assembly, each side (floor)	9	541	237	257	184	230	10	18	25
	A10	2 m from assembly, each side (floor)	9	22	17	15	56	211	-1	3	21
	A11	2 m from assembly, each side (floor)	25	42	33	101	115	213	5	2	19
CA/walls	A13	Green strut on south side of room	7	25	15	28	13	154	-3	-2	8
	A15	Room 110 entrance (large doorway)	0	9	12	5	34	31	-3	-3	-1
RBA	A17	Personnel doorway	2	6	4	2	5	22	9	-3	1
	A19	Downstream from AFS exhaust	9	7	1	8	7	4	-1	-2	6
CA/walls	A21	Wall closest to Godiva	-	14	9	16	13	18	2	2	-2
Other	A23	Facility Task Ventilation (screen)	-	-	-	-	1940	4905	48	59	122

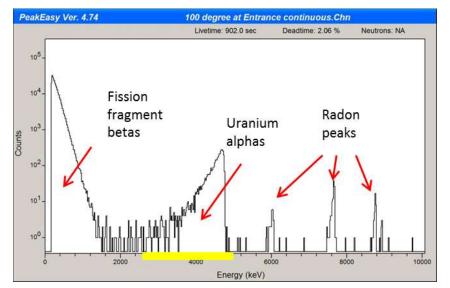
*Counted with Electra

UNCLASSIFIED

Contamination Survey Location Photos

UNCLAS

4k-5k dpm (17DEC15): cleaned during top hat removal

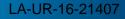

176k dpm (16DEC15): not cleaned during top hat removal

Alpha Spectroscopy

- Used to determine amount of HEU on air filters
- Counted 1 day post burst.
- 300 second count. The MDA for the detector setup is 5 dpm.
- Background counts taken before and after each filter.
- Alpha spectroscopy allows for Radon activity to be discriminated.
- 2013 data reanalyzed for consistency

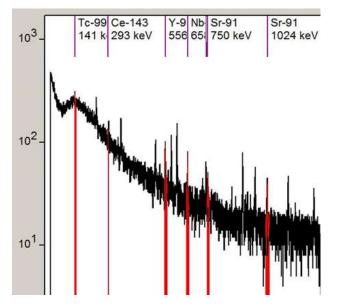
Air Filter Alpha Spectrum, 108 °C Burst, No Controls

UNCLASSIFIED


Alpha Spectroscopy Data

"200" degree Burst Data (dpm)

		12Sep20 13	28Oct2015	18Nov2015	17Dec201 5
Filter		200°, no controls	265°, Top Hat + AFS	269°, Top Hat	197°, AFS
LANL 1	ON at 30	7395	6	818	14
LANL 2	Continuous	53173	183	18300	329
LANL 3	On at 80	-	<mda< td=""><td>21</td><td>8</td></mda<>	21	8
LANL 4	CA Boundary	35271	30	5810	24
LANL 5	AFS	-	135	42200	301


UNCLASSIFIED

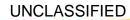
11

Gamma Spectroscopy

- To determine fission products on air filters
- Counted 1 day post burst
- 30 minute gamma spectra
- Identifies peaks of fission fragments
- Old data reanalyzed for consistency

Air Filter Gamma Spectrum, 66 °C Burst, with TopHat and AFS Controls.

UNCLASSIFIED



Gamma Spectroscopy Data

197 degree Burst Data (Bq at Time of Measurement) by Location

	ON at 30	Continuo us	ON at 80	CA Boundary	AFS
Isotope	LANL 1	LANL 2	LANL 3	LANL 4	LANL 5
Mo-99	<mda< td=""><td>5.2</td><td><mda< td=""><td>1.5</td><td>4.5</td></mda<></td></mda<>	5.2	<mda< td=""><td>1.5</td><td>4.5</td></mda<>	1.5	4.5
Ce-143	<mda< td=""><td>13.7</td><td><mda< td=""><td>1.7</td><td>8.6</td></mda<></td></mda<>	13.7	<mda< td=""><td>1.7</td><td>8.6</td></mda<>	1.7	8.6
I-133	<mda< td=""><td>9.0</td><td><mda< td=""><td>1.4</td><td>6.4</td></mda<></td></mda<>	9.0	<mda< td=""><td>1.4</td><td>6.4</td></mda<>	1.4	6.4
Nb/Zr-97	<mda< td=""><td>15.0</td><td><mda< td=""><td>2.0</td><td>11.4</td></mda<></td></mda<>	15.0	<mda< td=""><td>2.0</td><td>11.4</td></mda<>	2.0	11.4
Sr-91	4.4	132	<mda< td=""><td>156</td><td>126</td></mda<>	156	126

LA-UR-16-21407

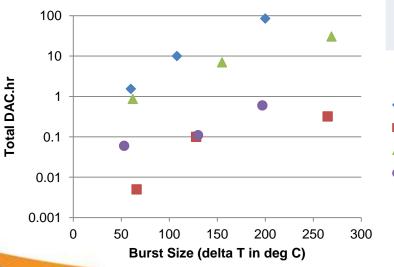
13

Gamma Spectroscopy Comparison by Control

• Comparison of Data for "LANL 2" Continuous Air Filter

"200" degree Burst Data (Bq at Time of Measurement) by Control

	12Sep2013	28Oct2015	18Nov2015	17Dec2015
Isotope	200°, no controls	265°, Top Hat + AFS	269°, Top Hat	197°, AFS
Mo-99	409	3.7	188	5.2
Ce-143	471	7	253	13.7
I-133	488	4.1	318	9.0
Nb/Zr-97	913	9	510	15.0
Sr-91	2240	28	1250	132


UNCLASSIFIED

LA-UR-16-21407

14

HEU and Fission Product Contribution to Total Airborne Dose Rates

 As burst size increases, the contribution from airborne HEU increases faster than the contribution from fission products.

			Fission		
	Name	Burst Size	Prod.	HEU	Total
		deg C	DAC.hr	DAC.hr	DAC.hr
	60	60	1.08	0.46	1.54
No Controls	150	108	2.30	7.70	10.00
	200	200	6.20	79.00	85.00
Top Hot I	60 THA	66	0.004	0.000	<0.005
Top Hat + AFS	150 THA	128	0.02	0.03	<0.1
AF3	200 THA	265	0.05	0.27	0.32
	60 TH	62	0.46	0.41	0.87
Top Hat only	150 TH	155	1.20	5.80	7.00
	200 TH	269	3.10	27.40	30.50
	60 A	53	0.03	0.03	0.06
AFS only	150 A	130	0.05	0.06	0.11
	200 A	197	0.11	0.49	0.60

LA-UR-16-21407

No Controls
Top Hat + AFS
Top Hat only

AFS only

UNCLASSIFIED

• Los Alamo

Table 1: Engineering Control Effectiveness Determination Table

Го	nal el T	sam	ter air pling tion	Highest Swipe in each Area [dpm/100cm^2]						ol Ve?		
Control Nominal	Nominal Burst del T	DAC-h	<10 DAC- h? Y/N	НСА	< 100,000? Y/N	CA Floor	< 5,000? Y/N	CA Walls/Cable s	< 2,000? Y/N	RBA	< 200? Y/N	Control Effective? Y/N
	60	1.5	Y	-		-		-		-		
NONE	150	10	Y	-		-		-		-		
NONE	>20 0	85 12.4	N*	-		-		-		-		
Тор	60	< 0.005	Y	90 α/ 507 β	Y	43 α/ 509 β	Y	7 α/ 25 β	Y	2 α/ 10 β	Y	Y
Hat and	150	< 0.1	Y	848 α/ 2363 β	Y	541 α/ 79 β	Y	25 α/ 11 β	Y	9 α/ 6 β	Y	Y
AFS	>200	0.32	Y	4868 α/ 28377 β	Y	237 α/ 86 β	Y	15 α/ 36 β	Y	12 α/ 24 β	Y	Y
	60	0.87	Y	717 α/ 256 β	Y	257 α/ 23 β	Y	28 α/ 7 β	Y	5 α/ 3β	Y	Y
Top Hat	150	7.0	Y	510 α/ 80 β	Y	231 α/ 23 β	Y	28 α/ 7 β	Y	5 α/ 3β	Y	Y
	>20 0	30.5 1.4	N* Y	1399 α/ 3277 β	Y	230 α/ 235 β	Y	154 α/ 603 β	Y	31 α/ 115 β	Y	Y
	60	0.06 0.02	Y	176,000 α	N**	77 α/ 40 β	Y	2 α/ 7 β	Y	9 α/ 11 β	Y	Y
AFS	150	0.11 <0.01	Y	15,000 α	Y	18 α/ 3 β	Y	2 α/ 3 β	Y	-2 α/ 4 β	Y	Y
	>20 0	0.6 0.02	Y	70,000 α	Y	357 α/ 1052 β	Y	8 α/ 2 β	Y	6 α/ 11 β	Y	Y
UNCLASSIFIED											I	

16

EST 1041

Conclusions

- The highest airborne contamination levels were found on the air samplers closest to Godiva and running continuously.
- Contamination levels increase with burst size.
- Airborne radioactivity levels drop off quickly in time following a burst.
- The "Top Hat" was effective at reducing surface contamination and airborne levels of HEU.
- The AFS was more effective at reducing the airborne levels of fission products.
- The combination of both controls provided additional reduction over the effect of any single control.

NISA

UNCLASSIFIED

Slide 17

This work is supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.

