The 2016 Edition of the ICSBEP Handbook

Presented by Mark DeHart John D. Bess Margaret A. Marshall Idaho National Laboratory Jim Gulliford Ian Hill OECD NEA

ANS 2016 Winter Meeting Las Vegas, NV November 6-10, 2016

This presentation was prepared at Idaho National Laboratory for the U.S. Department of Energy under Contract Number (DE-AC07-05ID14517)

Acknowledgments

The ICSBEP and IRPhEP are a collaborative effort

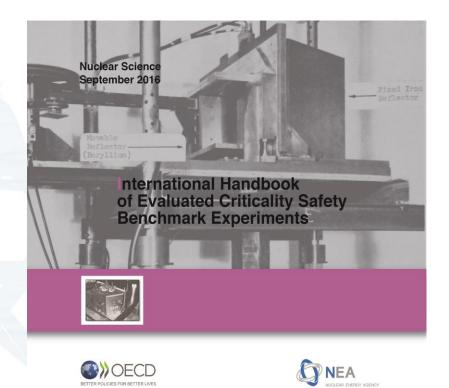
- Scientists, engineers, administrative support, program sponsors
- *****25 different countries have participated
 - $_{\odot}$ 22 in ICSBEP
 - 21 in IRPhEP

Without these dedicated individuals, these benchmark projects would not exist.

INTERNATIONAL BENCHMARK PROGRAMS

BETTER POLICIES FOR BETTER LIVES

Idaho National Laboratory


NEA

Benchmark Benchmark Evaluation Process Future Use Experiment Data Advanced Modeling and Simulation Externally Available Technical Journals & Reports Analytical Methods Evaluation Development, Validation, Process Internal Reports Letters & Memos and Verification Identify **Reactor Design** Short-Term Preservation and Licensing • Verify Logbooks Peer Review Training • Evaluate (National and -----Drawings International Criticality and Reactor • Compile Safety Analysis Experts) • Calculate Experimenter's Annotated Fuel Cycle and Related Document Copy of Published Reports Comprehensive Activities Source of Externally Range of Applicability and Peer Reviewed Integral Experimenters (Retired or Experiment Design Working on Other Projects) Benchmark Data Nuclear Data Refinement Facilities Awaiting D&D

International Handbook of Evaluated Criticality Safety Benchmark Experiments

September 2016 Edition

- > 22 Contributing Countries
- ~69,000 Pages
- 570 Evaluations
 - 4,913 Critical, Near-Critical, or Subcritical Configurations
 - 45 Criticality-Alarm-Placement/Shielding Configurations
 - 215 Configurations with Fundamental Physics Measurements
 - 829 Unacceptable Experiment Configurations

http://icsbep.inl.gov/

https://www.oecd-nea.org/science/wpncs/icsbep/

Breakdown of Current ICSBEP Benchmark Specifications

- 748 plutonium experiments
 - ✤ 36 compound
 - 123 metal
 - ✤ 589 solution
- 1435 highly enriched uranium experiments
 - 291 compound
 - ✤ 601 metal
 - ✤ 536 solution
 - ✤ 2 mixed compound/solution
 - ✤ 5 mixed metal/solution
- 268 intermediate- and mixedenrichment uranium experiments
 - 156 compound
 - ✤ 47 metal
 - ✤ 65 solution
- 1662 low enriched uranium experiments
 - ✤ 1398 compound
 - 87 metal
 - 117 solution
 - ✤ 60 mixed compound/solution

> 244 ²³³U experiments

- 6 compound
- 11 metal
- 227 solution
- 536 mixed plutonium-uranium experiments
 - 301 compound
 - 52 metal
 - 86 solution
 - ✤ 76 mixed compound/solution
 - ✤ 21 mixed metal/compound
 - 20 special isotope experiments
 - metal (²³⁷Np, ²³⁸Pu, ²⁴²Pu, & ²⁴⁴Cm)
- 9 criticality-alarm/shielding experiments
 - 45 unique configurations with numerous dose points
- > 8 fundamental physics experiments
 - 215 unique measurements such as fission rates, transmission measurements, and subcritical neutron multiplication measurements

F

Recent Revisions to the Handbook

6 Revisions

- PU-MET-FAST-001
 - Jezebel
 - Updated masses for components
- ✤ PU-MET-INTER-002
 - o **ZPR-6/10**
 - Improved uncertainty analysis

HEU-MET-FAST-028


- Flattop
- Updated sample calculations

✤ LEU-COMP-THERM-061

- VVER Lattice
- Fixed Hf absorber rod diameter error in figure

LEU-COMP-THERM-071

- o UO2 Rod Arrays
- Improved uncertainty analysis
- FUND-NCERC-PU-HE3-MULT-001
 - Ni-Reflected Pu Sphere
 - Revised uncertainty analysis for leakage multiplication

Revision: PU-MET-FAST-001

- LANL Jezebel
 - ✤Pu Sphere
 - Jeff Favorite

Discovered mass accountability statements, drawings, and logbooks

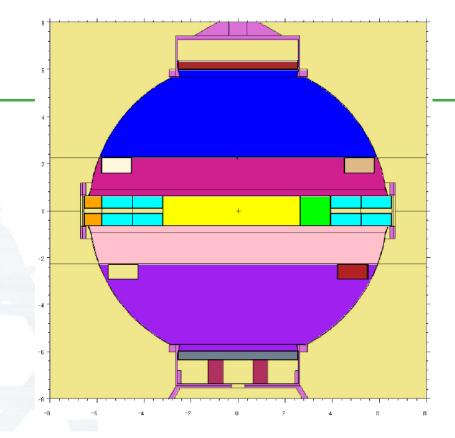


Table 51. Sample Calculation Results (Using MCNP6.1®, ENDF/B-VII.1) for the Detailed Models.

Case	Configuration	Calculated k _{eff}	Benchmark k _{eff}	Calc. – Bench. (pcm)	Calc. – Bench. (std. devs.)
1	А	1.00067 ± 0.00002	0.99999 ± 0.00110	68	0.61
2	В	1.00123 ± 0.00002	1.00016 ± 0.00110	107	0.96
3	С	1.00092 ± 0.00002	1.00020 ± 0.00110	72	0.64
4	D	1.00191 ± 0.00002	1.00128 ± 0.00110	63	0.56

Revision: PU-MET-INTER-002

≻ ANL – ZPR-6/10

- Pu/C/SST Assembly Reflected by SS/Fe
 Rich Lell
- Updated uncertainty analysis based on results from more recent ZPR/ZPPR benchmark evaluations

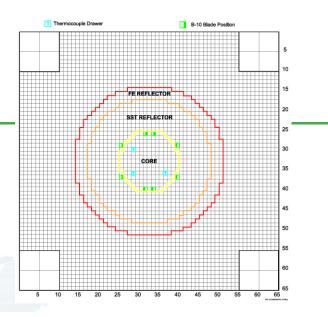


Table 4.1. Sample Calculation Results for Case 1, ZPR-6/10 Loading 24.

Code	Cross	Calcu	lation	С/Е -	1
	Sections	k _{eff}	σ	C/E-1, %	σ, %
KENO V.a	238-Group ENDF/B-V	1.0269	0.0009	3.96	0.26
KENO V.a	27-Group ENDF/B-IV	1.0262	0.0009	3.89	0.26
MCNP-4B	Cont. Energy ENDF/B-V	1.0038	0.0010	1.62	0.26
MCNP-4C	Cont. Energy ENDF/B-V	0.9945	0.0005	0.68	0.24
MCNP-4C	Cont- Energy ENDF/B-VI	1.0245	0.0005	3.72	0.25
VIM	Cont. Energy ENDF/B-V	0.9862	0.0005	-0.16	0.24
VIM	Cont. Energy ENDF/B-VI	1.0222	0.0006	3.48	0.25
MONK-8B ^(a)	8220-Group UKNDL	1.0444	0.0009	5.73	0.26
MONK-8B ^(a)	13193-Group JEF-2.2	1.0115	0.0009	2.40	0.26
MONK-8B ^(a)	13193-Group ENDF/B-VI	1.0324	0.0009	4.52	0.26
MCNP6	Cont. Energy ENDF/B-VII.1	1.0148	0.0001	2.73	0.24

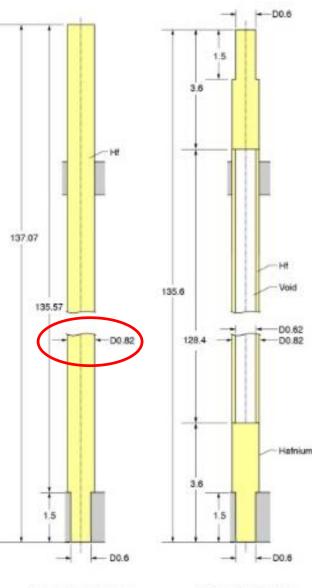
Revision: HEU-MET-FAST-028

LANL – Flattop

- HEU Sphere Reflected by Nat-U
 Roger Brewer
- > Updated sample calculations from
 - Jeff Favorite
 - Discrepancy noted in previously calculated results

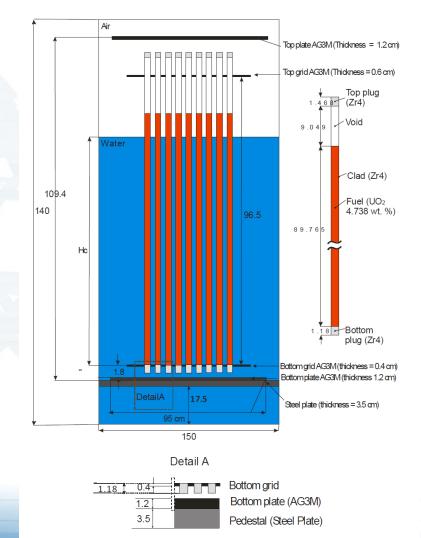
Table 3. Sample Calculation Results (United States).^(a)

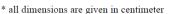
Code Name	Cross-Section Set	Calculated k _{eff}
KENO	Hansen-Roach (16 groups, no self-shielding)	0.9955 ± 0.0013
KENO	ENDF/B-IV (27 groups)	1.0050 ± 0.0012
MCNP6.1.1®	ENDF/B-V (Continuous-energy)	1.00422 ± 0.00001
MCNP6.1.1®	ENDF/B-VI.2 (Continuous-energy)	1.00248 ± 0.00001
MCNP6.1.1®	ENDF/B-VII.0 (Continuous-energy)	1.00288 ± 0.00001
MCNP6.1.1®	ENDF/B-VII.1 (Continuous-energy)	1.00284 ± 0.00001
ONEDANT	ENDF/B-IV (27 groups)	1.0076
PARTISN	ENDF/B-V (30 groups, no shelf-shielding)	0.99756
PARTISN	ENDF/B-VII.0 (30 groups, no self-shielding)	1.00262
PARTISN	ENDF/B-VII.0 (618 groups, no self-shielding)	1.00239


(a) Results reported with four decimal places appeared in Revision 1 of this evaluation (Sept. 1999). Results reported with five decimal places were calculated by Jeffrey A. Favorite, Los Alamos National Laboratory, in April 2016 for Revision 2 of this evaluation.

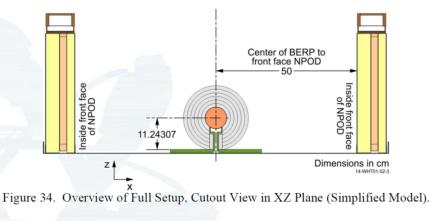
Revision: LEU-COMP-THERM-061

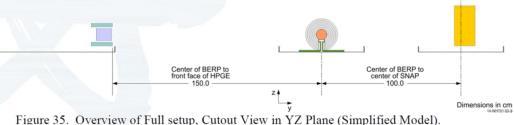
> Kurchatov


- VVER Physics Experiments
- ♦ P-Facility
- Corrected error in benchmark diagram for absorber rod diameter
 - Figure 8



Revision: LEU-COMP-THERM-071


- LEU O2 Fuel Rod Array (CEA, Valduc)
 - Nicolas Leclaire (IRSN)
- Updated uncertainty analysis, especially rod position uncertainty
- New photographs
- Updated sample calculations



Revision: FUND-NCERC-PU-HE3-MULT-001

- NCERC Ni-Reflected Pu Sphere
 - Benoit Richard
 - Jesson Hutchenson
- Revised uncertainty analysis for leakage multiplication, M_L

Recent Additions to the Handbook

≻6 New

♦ HEU-MET-FAST-083

 Complex HEU Annuli

♦ HEU-MET-FAST-096

 Critical Experiments for SORA Reactor

LEU-COMP-THERM-097

 7uPCX AI/Ti Rod Experiments

ALARM-TRAN-PB-SHIELD-001

 Fissile Solution Critical Excursion

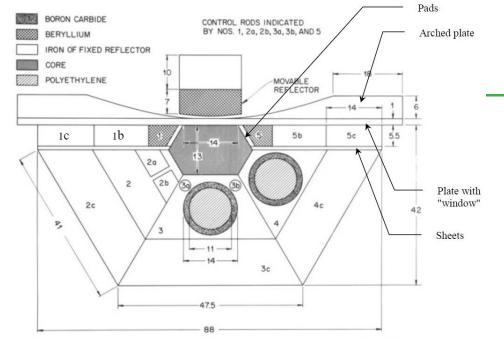
ALARM-TRAN-CH2-SHIELD-001

- Fissile Solution Critical Excursion
- *FUND-NCERC-PU-HE3-MULT-002

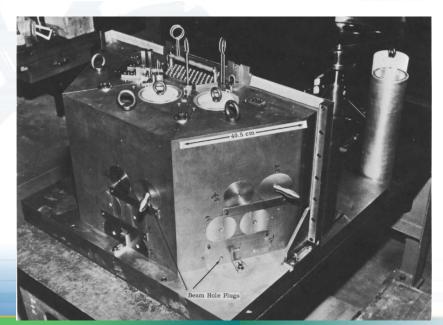
o W-Reflected Pu Sphere

New: HEU-MET-FAST-083

Complex HEU Annuli (ORCEF)


♦ISU – Quinton Bealieu

J. T. Mihalczo experiments to test complex geometry capability of early Monte Carlo codes with off-centered geometries


				0			-
Casa	Calculated			Benchmark Experiment			$\frac{C-E}{M}$ (%)
Case	$\mathbf{k}_{\mathbf{eff}}$	±	σ	$\mathbf{k}_{\mathrm{eff}}$	±	σ	\overline{E}
1 – Annulus with Cylinder	0.99693	±	0.00002	1.0001	±	0.0006	-0.31
2 – Annulus with Parallelepiped	0.99842	±	0.00002	0.9993	±	0.0012	-0.09
3 – Annulus with Split Parallelepiped	0.99616	±	0.00002	0.9984	±	0.0009	-0.22

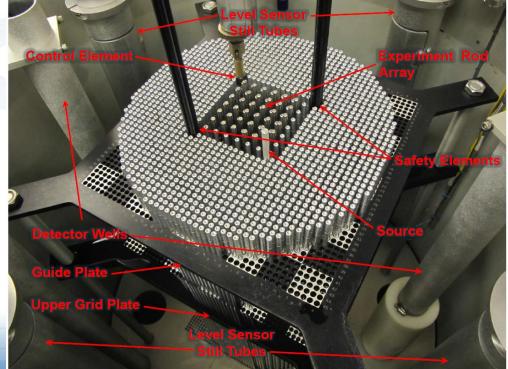
New: HEU-MET-FAST-096

SORA Critical **Experiments** (ORCEF) Liu Xiaobo (China) > J. T. Mihalczo experiments to mockup iron matrix and reflected pulse reactor

DIMENSIONS IN cm

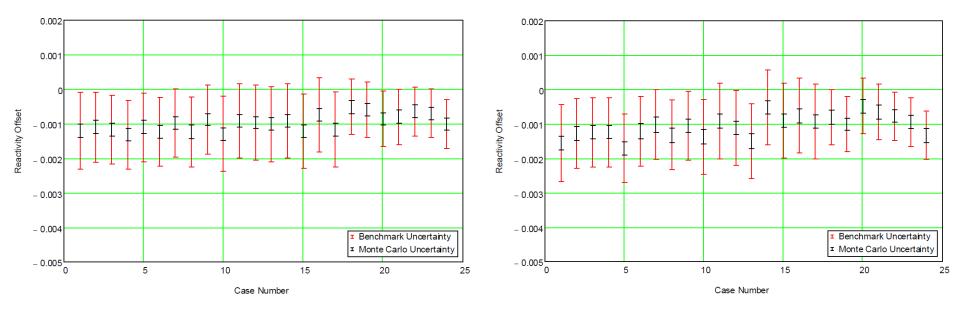
HEU-MET-FAST-096 Results

	Case C		culat	ed	Benchma	rk Ex	periment	$\frac{C-E}{E}\%$		
	Case	Δk_{eff}	±	σ_{MC}	Δk_{eff}	±	σ		E	0
	1	0.99777	±	0.00004	1.0022	±	0.0024	-0.45	±	0.24
	2	0.99845	±	0.00004	1.0021	±	0.0024	-0.37	±	0.24
Ba	3	1.00050	±	0.00004	1.0014	±	0.0025	-0.09	±	0.24
Be "Pulse" Reflector	4	0.99883	±	0.00004	1.0020	±	0.0025	-0.32	±	0.24
Reflector	5	1.00066	±	0.00004	1.0023	±	0.0026	-0.17	±	0.24
	6	1.00009	±	0.00004	1.0017	±	0.0026	-0 .16	±	0.24
	7	0.99637	±	0.00004	1.0007	±	0.0026	-0.43	±	0.25
	8	0.99722	±	0.00004	1.0019	±	0.0025	-0.46	±	0.24
	9	0.99960	±	0.00004	1.0017	±	0.0025	-0.21	±	0.24
	10	0.99582	±	0.00004	1.0014	±	0.0025	-0.55	±	0.25
	11	0.99451	±	0.00004	1.0013	±	0.0023	-0.68	±	0.25
	12	0.99390	±	0.00004	1.0013	±	0.0024	-0.74	±	0.25
<u>"Pulse"</u>	13	1.00106	±	0.00004	1.0032	±	0.0023	-0.21	±	0.24
Fe "Pulse" Reflector	14	0.99299	±	0.00004	1.0008	±	0.0024	-0.78	±	0.25
	15	0.99815	±	0.00004	1.0017	±	0.0024	-0.35	±	0.24



New: LEU-COMP-THERM-097

> Ti/AI Rods in 6.9% Enriched UO2 Lattices


♦ Gary Harms – SNL

> 21 experiments designed to test titanium nuclear data

LEU-COMP-THERM-097 Results

ENDF/B-VII.1 Library.

Figure 73. Reactivity Offset for MCNP6.1.1 Calculations using Continuous-Energy Cross Sections from the Figure 72. Reactivity Offset for KENO V.a Calculations using Continuous-Energy Cross Sections from the ENDF/B-VII.1 SCALE6.2 Library.

New: ALARM-TRAN -PB-SHIELD-001

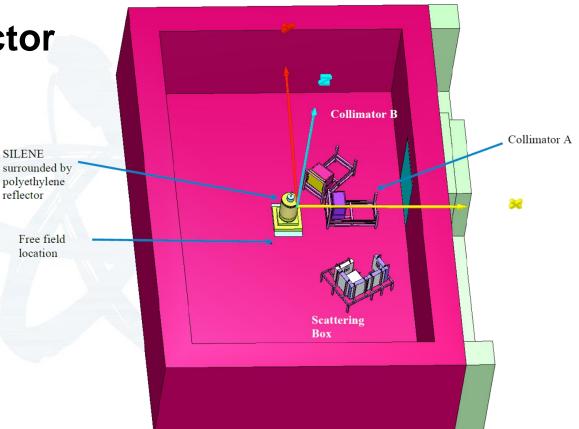
- Valduc SILENE with Pb Reflector
 - Thomas Miller (ORNL)
- Neutron activation and thermoluminescent dosimeter responses

2 mm

Table 4-10. Sample neutron activation calculation results with SCALE 6.2 ENDF/B-VII.1 (US)

ALARM-TRAN-PB -SHIELD-001 Results

Table 4-11. Sample TLD dose calculation results with SCALE 6.2 ENDF/B-VII.1 (US


Position	TLD Type	Dose (Gy)	Monte Carlo relative uncertainty	C/E	C/E relative uncertainty
Case 1 collimator A	Al ₂ O ₃	6.909E-01	0.0837	0.84	0.1164
Case 2 collimator B	Al ₂ O ₃	4.264E-01	0.0270	0.78	0.1217
Case 3 free field	Al ₂ O ₃	3.101E-01	0.1289	0.55	0.1509
Case 6 scattering box 3	Al ₂ O ₃	3.178E-01	0.0885	0.76	0.1183

				Monte Carlo			1
	Position	Reaction	Activity	relative	C/E	C/E relative	
			(Bq/g)	uncertainty		uncertainty	
		⁵⁹ Co(n, γ) ⁶⁰ Co	7.001E+01	0.0458	1.15	0.0841	
		$^{197}Au(n,\gamma)^{198}Au$	8.206E+04	0.0333	1.19	0.0758	
		$^{115}In(n,\gamma)^{116}In$	9.615E+06	0.0481	1.21	0.0886	
	Case 1	$^{115}In(n,n'\gamma)^{115m}In$	5.761E+03	0.0188	0.94	0.0661	
	collimator A	56 Fe(n,p) 56 Mn +					
		$^{55}Mn(n,\gamma)^{56}Mn$	2.297E+03	0.0317	1.14	0.0759	
		²⁴ Mg(n,p) ²⁴ Na	3.367E+01	0.0229	1.36	0.0686	
		58Ni(n,p)58Co	7.818E+00	0.0166	1.14	0.0657	
F		⁵⁹ Co(n,γ) ⁶⁰ Co	3.883E+01	0.0033	1.20	0.0784	
		$^{197}Au(n,\gamma)^{198}Au$	3.883E+04	0.0041	1.25	0.0831	
		115 In(n, γ) ¹¹⁶ In	4.690E+06	0.0035	1.22	0.0842	
	Case 2	$^{115}In(n,n'\gamma)^{115m}In$	9.600E+02	0.0071	1.02	0.1076	
	collimator B	56 Fe(n,p) 56 Mn +					
		$^{55}Mn(n,\gamma)^{56}Mn$	1.257E+03	0.0033	1.21	0.0741	
)		$^{24}Mg(n,p)^{24}Na$	6.949E+00	0.0151	1.26	0.1196	
		⁵⁸ Ni(n,p) ⁵⁸ Co	1.475E+00	0.0077	1.16	0.1120	
F		⁵⁹ Co(n,γ) ⁶⁰ Co	7.641E+01	0.0409	1.22	0.0812	
		$^{197}Au(n,\gamma)^{198}Au$	7.825E+04	0.0507	1.22	0.0832	
		$^{115}In(n,\gamma)^{116}In$	8.874E+06	0.0414	1.13	0.0822	
	Case 3	$^{115}In(n,n'\gamma)^{115m}In$	5.176E+03	0.0297	0.99	0.0698	
	free field	${}^{56}Fe(n,p){}^{56}Mn +$					
		$^{55}Mn(n,\gamma)^{56}Mn$	2.560E+03	0.0383	1.23	0.0749	
		²⁴ Mg(n,p) ²⁴ Na	3.091E+01	0.0277	1.17	0.0760	
		⁵⁸ Ni(n,p) ⁵⁸ Co	7.235E+00	0.0209	1.14	0.0667	
-		⁵⁹ Co(n,γ) ⁶⁰ Co	3.026E+01	0.0376	1.24	0.0828	
		$^{197}Au(n,\gamma)^{198}Au$	2.987E+04	0.0314	1.24	0.0776	
		$^{115}In(n,\gamma)^{116}In$	3.653E+06	0.0341	1.26	0.0852	
	Case 4	$^{115}In(n,n'\gamma)^{115m}In$	3.429E+02	0.0368	1.06	0.1113	
S	cattering box 1	${}^{56}\text{Fe}(n,p){}^{56}\text{Mn} +$					
	0	$^{55}Mn(n,\gamma)^{56}Mn$	1.151E+03	0.0470	1.31	0.0820	
		$^{24}Mg(n,p)^{24}Na$	1.451E+00	0.0143	1.20	0.1358	
		⁵⁸ Ni(n,p) ⁵⁸ Co	4.076E-01	0.0152	1.26	0.1323	
		⁵⁹ Co(n,γ) ⁶⁰ Co	3.521E+01	0.0161	1.25	0.0749	
	Case 5	$^{197}Au(n,\gamma)^{198}Au$	3.285E+04	0.0163	1.27	0.0717	
S	scattering box 2	⁵⁸ Ni(n,p) ⁵⁸ Co	2.128E-01	0.0318	1.12	0.1170	
	<i>a i</i>	⁵⁹ Co(n,γ) ⁶⁰ Co	5.479E+01	0.0287	1.20	0.0774	
	Case 6	$^{197}Au(n,\gamma)^{198}Au$	5.436E+04	0.0309	1.24	0.0753	
S	scattering box 3	⁵⁸ Ni(n,p) ⁵⁸ Co	1.767E+00	0.0301	1.01	0.0776	
		$^{59}Co(n,\gamma)^{60}Co$	4.946E+01	0.0270	1.20	0.0776	
	Case 7	$^{197}Au(n,\gamma)^{198}Au$	4.889E+04	0.0357	1.25	0.0779	
	scattering box 4	⁵⁸ Ni(n,p) ⁵⁸ Co	1.787E+00	0.0426	0.98	0.0839	

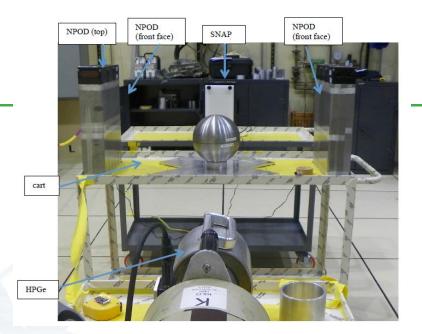
New: ALARM-TRAN-CH2-SHIELD-001

- Valduc SILENE with CH2 Reflector
 - Thomas Miller (ORNL)
- Neutron activation and thermoluminescent dosimeter responses

Table 4-8. Sample Neutron Activation Calculation Results with MCNP6 ENDF/B-VII.1 (US).

ALARM-TRAN-CH2 -SHIELD-001 Results

Position	Reaction ⁵⁹ C@(n ₇ γ) ⁶⁰ C@ ¹⁹⁷ Au(n,γ) ¹⁹⁸ Au	Activity (Bq/g) -4:644E+00- 5.801E+03	Monte Carlo relative uncertainty -0:0024 0.0030	C/E -1-0206- 0.8911	C/E relative uncertainty -0:0683 0.0716	
	$113 \ln(n,\gamma)^{116} \ln(n,\gamma)^{116}$	6.407E+05	0.0032	0.9591	0.0691	
Case 1	$^{115}In(n,n'\gamma)^{115m}In$	8.269E+02	0.0020	0.8327	0.0630	
collimator A	56 Fe(n,p) 56 Mn + 55 Mn(n, γ) 56 Mn	1.722E+02	0.0029	0.9165	0.0638	
	$^{24}Mg(n,p)^{24}Na$	1.608E+01	0.0036	0.9928	0.0747	
	⁵⁸ Ni(n,p) ⁵⁸ Co	1.939E+00	0.0018	0.9005	0.0654	
	⁵⁹ Co(n, γ) ⁶⁰ Co	7.427E-01	0.0024	1.1253	0.0855	
	$^{197}\mathrm{Au}(\mathrm{n},\gamma)^{198}\mathrm{Au}$	1.091E+03	0.0033	0.9314	0.0798	
Case 2	115 In(n, γ) 116 In	9.983E+04	0.0033	0.9092	0.0825	
collimator B	115 In(n,n' γ) 115m In	3.595E+02	0.0019	0.8746	0.0722	
commator D	56 Fe(n,p) 56 Mn + 55 Mn(n, γ) 56 Mn	3.775E+01	0.0022	0.9075	0.0749	
	$^{24}Mg(n,p)^{24}Na$	8.019E+00	0.0034	1.0428	0.0774	
	${}^{24}Mg(n,p)^{24}Na$ ${}^{59}Co(n,\gamma)^{60}Co$ ${}^{197}Au(n,\gamma)^{198}Au$	5.448E+00	0.0033	1.0896	0.0692	
	$^{197}Au(n,\gamma)^{198}Au$	5.860E+03	0.0043	1.0559	0.0648	
	115 In(n, γ) 116 In	6.648E+05	0.0035	1.1326	0.0725	
Case 3	$^{115}In(n,n'\gamma)^{115m}In$	7.067E+02	0.0021	0.8403	0.0683	
free field	56 Fe(n,p) 56 Mn + 55 Mn(n, γ) 56 Mn	2.110E+02	0.0037	0.9859	0.0671	
	$^{24}Mg(n,p)^{24}Na$	1.575E+01	0.0044	1.0712	0.0801	
	⁵⁸ Ni(n,p) ⁵⁸ Co	1.800E+00	0.0025	1.0033	0.0634	
	⁵⁹ Co(n,γ) ⁶⁰ Co	2.577E+00	0.0016	1.1894	0.0729	
	$^{197}Au(n,\gamma)^{198}Au$	2.548E+03	0.0020	1.0798	0.0739	
Case 4	$\frac{{}^{115}\text{In}(n,\gamma){}^{116}\text{In}}{{}^{115}\text{In}(n,n'\gamma){}^{115m}\text{In}}$	3.034E+05	0.0019	1.1448	0.0743	
scattering box 1	115 In(n,n' γ) 115m In	5.681E+01	0.0034	0.9661	0.0994	
	56 Fe(n,p) 56 Mn + 55 Mn(n, γ) 56 Mn	9.111E+01	0.0021	1.1636	0.0685	
Case 5	⁵⁹ Co(n, γ) ⁶⁰ Co	3.040E+00	0.0013	1.2078	0.0709	
scattering box 2	$^{197}Au(n,\gamma)^{198}Au$	2.951E+03	0.0018	1.1763	0.0688	
Case 6	⁵⁹ Co(n,γ) ⁶⁰ Co	4.327E+00	0.0014	1.1065	0.0717	
scattering box 3	$^{197}Au(n,\gamma)^{198}Au$	4.336E+03	0.0018	1.1089	0.0681	
Case 7	⁵⁹ Co(n,γ) ⁶⁰ Co	3.953E+00	0.0013	1.1388	0.0696	
scattering box 4	$^{197}\mathrm{Au}(\mathrm{n},\gamma)^{198}\mathrm{Au}$	3.888E+03	0.0017	1.0595	0.0730	l


Table 4-9. Sample TLD Dose Calculation Results with MCNP6 ENDF/B-VII.1 (US).

Position	TLD Type	Dose (Gy)	Monte Carlo relative uncertainty	C/E	C/E relative uncertainty
Case 1 collimator A	Al_2O_3	3.314E+00	0.0071	0.6265	0.0787
Case 2 collimator B	Al_2O_3	1.902E+00	0.0044	0.6040	0.0832
Case 3 free field	Al_2O_3	3.130E+00	0.0041	0.6535	0.0917
Case 6 scattering box 3	Al_2O_3	6.628E-01	0.0034	0.6563	0.0846
Case 7 scattering box 4	Al_2O_3	7.478E-01	0.0058	0.6560	0.0784

1) <u>[</u>	
1 1.51	

New: FUND-NCERC-PU-HE3-MULT-002

- NCERC W-Reflected Pu Sphere
 - Benoit Richard
 - Jesson Hutchenson

Subcritical measurements with varying reflector thickness

Case	Tungsten Thickness (in.)	R ₁ (cts/s)	σ	(C-E)/E (%)	R ₂ (cts/s)	σ	(C-E)/E (%)	M_L	σ	(C-E)/E (%)
1	0.0	9387.38	3.14	4.06	1752.88	9.65	6.64	3.545	0.023	5.16
2	0.5	13402.94	4.10	1.83	4810.58	17.46	0.38	4.473	0.022	-0.71
3	1.0	17273.83	5.12	0.84	10174.02	29.20	-2.40	5.514	0.024	-4.43
4	1.5	21518.23	6.36	0.04	19521.57	49.74	-3.38	6.644	0.026	-5.66
5	2.0	26082.81	7.81	-0.15	34258.82	79.50	-4.05	7.865	0.029	-6.28
6	2.5	30718.62	9.44	-0.46	55664.39	122.18	-4.33	9.137	0.029	-7.08
7	2.75	32958.73	10.29	-0.57	68657.54	146.86	-4.49	9.834	0.035	-6.20
8	3.0	35236.45	11.16	-1.00	83636.32	175.06	-5.42	10.442	0.032	-7.29

Evaluations Planned for Future Publication

- Bettis TRX Critical Experiments
- INL/NASA UF6 Spherical Gas-Core Reactor
- IRSN/Valduc H2O-Moderated LEUO2 Rods with CH2 Core
- IPEN/MB-01 Subcritical Experiments
- NCERC Cu-Reflected Pu Sphere

- SNL Ti Experiments in BUCCX
- JAEA TRACY Critical and Supercritical Experiments
- Westinghouse Saxton Plutonium Project
- Transient Reactor Test (TREAT)
- > GODIVA-IV Revision

Conclusions

- The ICSBEP and IRPhEP continue to provide high-quality integral benchmark data
- Valuable for nuclear data testing, uncertainty reduction, criticality safety, reactor physics, advanced modeling and simulation
- Data contributed from 25 countries
- Enable current and future activities supported by experimental validation

Questions?

📉 Idaho National Laborator

Extra Slides

Countries Participating in the ICSBEP & IRPhEP

- Argentina
- > Belgium
- Brazil
- Canada
- People's Republic of China
- Czech Republic
- France
- Germany
- Hungary
- India
- Israel
- > Italy
- Japan

- Kazakhstan
- Poland
- Republic of Korea
- Russian Federation
- Serbia
- Slovenia
- South Africa
- Spain
- Sweden
- Switzerland
- United Kingdom
- United States of America

Directed and Distributed via the OECD NEA

Managed by an Elected Chair

Current OECD/NEA Member Countries

Australia	France	Luxembourg	Slovak Republic
Austria	Germany	Mexico	Slovenia
Belgium	Greece	Netherlands	Spain
Canada	Hungary	New Zealand	Sweden
Chile	Iceland	Norway	Switzerland
Czech Republic	Ireland	Poland	Turkey
Denmark	Israel	Portugal	United Kingdom
Estonia	Italy	Republic of Korea	United States
Finland	Japan	Russian Federation	

