A Case Study in the Application of TSUNAMI-3D – Part 1, Multigroup

William (B.J.) Marshall

Elizabeth L. Jones Bradley T. Rearden Michael E. Dunn

American Nuclear Society Winter Meeting & Nuclear Technology Expo November 9, 2016 Les Vegas, Nevada, USA

ORNL is managed by UT-Battelle for the US Department of Energy

- 1. Background and introduction
- 2. Direct perturbation (DP) calculations
- 3. Case study experiment description
- 4. Results
- 5. Conclusions

2 TSUNAMI Case Study Part I - Multigroup – ANS November 9, 2016

Background and introduction

- Use of sensitivity/uncertainty (S/U) methods has increased over the last decade
- Tools within both SCALE and MCNP can determine sensitivities and apply nuclear data uncertainties
- A case study in TSUNAMI use is presented here in multigroup (MG) and in a companion paper in continuousenergy (CE) to demonstrate proper use of tools
- <u>Direct perturbations</u> are especially important to generate reference results

Direct perturbation calculations

- Sensitivity data file (SDF) is created using the TSUNAMI-3D sequence
- TSUNAMI sensitivity can be confirmed by using DP calculations
- DP sensitivity *is* the (reference) sensitivity
- Select important isotopes, elements, and/or materials of interest
 - Include at least the primary fission and moderator species
 - Also include materials/isotopes of interest (e.g., absorber/FP)

Direct perturbation calculations (cont.)

- Perturbation selected to cause $\pm 0.5\% \Delta k$ change
 - Perturbation large enough to yield accurate results and small enough to generate a linear response
- Uncertainty-weighted linear least squares fit of k_{eff} points used to determine the DP sensitivity
 - Slope of the trend line is the sensitivity
- Desirable for the differences between TSUNAMI and DP sensitivities to be: 1) less than 5%, 2) less than 0.01 in absolute sensitivity, and 3) less than 2 standard deviations using the combined uncertainties

Case study experiment (HEU-MET-MIX-017)

- Model from the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook
- 1 case/configuration
- Heterogeneous cylinder of alternating disks of HEU, polyethylene, and tungsten reflected by polyethylene
- Core is divided by a horizontal gap into 2 sections: a movable bottom part and a stationary top part
- Calculations used KENO V.a

- Initial model generated with a single mixture in the model for each material
- Mesh size suggestions: 1) about one-tenth of size of fissile material or 2) On the order of the pitch for lattices or arrays
- Flux mesh ~0.5 cm radially by 7 cm axially
 - Difference between DP and TSUNAMI in ¹H sensitivity almost 60%
 - Model refinement(s) needed
- Mesh changed to 2 cm cubic mesh
 - Discrepancy in ¹H improved to 12%; more work needed

Results (continued)

- Separate mixtures in the model for each disk
 - Multiple identical copies of material descriptions
 - TSUNAMI calculates sensitivity by mixture, so this provides more detailed local results
 - Fluxes also collected by *region* in some cases arbitrary subdivision can improve results (manual subdivision)
- 1D infinite slab cross section processing with all the mixture numbers specified
- Same 2 cm cubic mesh

Results (continued)

lsotope	ΔS (%)	ΔS (σ)	ΔS (abs)
C (refl)	2.33	2.16	0.0009
C (disks)	0.21	0.18	0.0001
H (disks)	9.07	3.57	0.0056
²³⁵ U (disk 1)	1.46	1.33	0.0002
²³⁵ U (disk 2)	4.27	3.94	0.0011
²³⁵ U (disk 3)	0.12	0.11	<0.0001
²³⁵ U (disk 4)	6.55	6.01	0.0029
²³⁵ U (disk 5)	4.40	4.15	0.0020
²³⁵ U (disk 6)	0.68	0.66	0.0003
²³⁵ U (disk 7)	2.11	1.96	0.0008
²³⁵ U (disk 8)	0.57	0.57	0.0001
²³⁵ U (disk 9)	2.59	2.45	0.0003

²³⁵U sensitivity by disk

Conclusions

- Use of DP calculations provides confidence in calculated sensitivities
 - Essentially confirms settings yield correct results
- Case study for HMM-017 shows approach for challenging system
 - Results aren't always clean or unambiguously good
- Same case study presented in companion paper
 - CE attractive for systems with no 1D cell for XS processing

Acknowledgement

This work was supported by the Department of Energy (DOE) Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration.