

Prompt Neutron Decay Constants in a Highly Enriched Uranium-Lead Copper Reflected System

Rene Sanchez, Travis Grove, George McKenzie, Joetta Goda, John Bounds, Theresa Cutler, and David Hayes

UNCLASSIFIED

Background

Bruno Rossi proposes these measurements (1944).

Theory of "Chain reactor neutron population" is developed by R. Feynman, F. de Hoffmann, and R. Serber. "Intensity Fluctuations of a Neutron Chain Reactor," LADC-256 (June 1944).

 J. Orndoff extended and applied the theory. "Prompt Neutron Periods of Metal Critical Assemblies" Nucl. Sci. and Eng. 2, 450 (1957).

UNCLASSIFIED

Purpose

Prompt Neutron Decay Constants Purpose:

- To provide information regarding the neutron lifetime, β_{eff} of the system, and $k_{eff.}$
- Indicators of the neutron energy spectrum
- Benchmarks

UNCLASSIFIED

Reference

Intensity Fluctuations of Neutron Chain Reactor R. Feynman, F. de Hoffmann, R. Seber

Primary Neutrons

UNCLASSIFIED

Theory

$$\dot{N} \alpha N$$
 $\frac{\partial N}{\partial t} = \alpha N$ $N(t) = N_0 e^{\alpha t}$

 $\frac{dt}{\tau_{f}}$ Probability of any neutron present being detected and producing a count in ³He detector at t₁ or t₂

Fdt₀ Probability that a fission occurs at t_0 in dt_0

UNCLASSIFIED

Theory (cont.)

$\boldsymbol{v}\boldsymbol{e}^{-\boldsymbol{\alpha}(t_1-t_0)}$ Expected number of neutrons at t_1 due to neutrons created at t_0

 $(\nu - 1)e^{-\alpha(t_2 - t_0)}$ Expected number of neutrons at t_2 due to neutrons created at t_0

$$\int_{-\infty}^{t_1} (v-1) e^{-\alpha(t_2-t_0)} \varepsilon \frac{dt_2}{\tau_f} v e^{-\alpha(t_1-t_0)} \varepsilon \frac{dt_1}{\tau_f} F_{dt_0}$$
 Probability of correlated counts

Fedt₁Fedt₂ Probability of uncorrelated counts

UNCLASSIFIED

Theory (cont.)

Detection System

In the Control Room

The HEU-Lead core surrounded with copper

³He Detectors

Detector diameter 0.25 inches

Detector length 3.75 inches

Sensitive length 3.0 inches

Fill pressure of 40 atmospheres of ³He

UNCLASSIFIED

Recording of Neutron Pulses

Time

UNCLASSIFIED

Analysis of the Data (Mathcad)

$$F_{n}(t,u) \coloneqq \begin{bmatrix} u_{0} + u_{1} \cdot exp(-u_{2} \cdot t) \\ 1 \\ exp(-u_{2} \cdot t) \\ -t \cdot (u_{1}) \cdot exp(-u_{2} \cdot t) \end{bmatrix} \qquad \begin{array}{c} 7 \times 10^{3} \\ 6 \times 10^{3} \\ Fit(r) \\ 5 \times 10^{3} \\ 4 \times 10^{3} \\ 0 \\ 100 \\ 200 \\ 300 \\ 400 \end{array}$$

alpha1 = 3.977×10^4

UNCLASSIFIED

α (delayed critical)

Prompt Neutron Decay Constants vs Inverse Count Rate (Glue)

MCNP Model

Configuration (with glue)

	Upper Portion of the Core						. 1
-	2.5	5"	6"	10"	15" 21"		
	Pb	РЪ	Void	HEU (10463)	Pb #46		
		1	Рb #28		Pb #11		
	HEU (Q	(2-16)	HE	U (11018)	HEU (B-2444-37)		
		Pb #2					
		Pb #13					
		Pb #3					
		Pb #5					
		HEU divided into six 60∘wedges					
	(8	601, 8602, 86	03, 8604, 8605,	8606)			
		1	Pb #14		Pb #41		
			Pb#19		Pb # 17		
		1	Pb #18		Pb #48		
		1	Pb #16		Pb #49		
		HE	U (11149)		HEU (B-2444-19)		
		1	РЬ #33		Pb #8		
		1	РЪ #34		Pb #2		
		Pb #12					
	Pb #20				Pb #53		
	HEU (11017)				HEU (B-2444-13)		
		1	РЪ #35		Pb #9		
		1	РЪ #36		Pb #12		
		Pb #17					
		Pb #24					
		HEU (11019)					
		Pb #29					
		Pb #23					
		Pb #26			Pb #18		
	Pb #27				Pb #14		
		HEU (11147)					
	Pb #31				Pb #10		
	Pb #32				Pb #20		
			Pb #5		Pb #21		
		1	Pb #30		Pb #31		
		HE	U (11150)		HEU (B-2444-27)		
F		1	Pb #22		Pb #28		
		1	РЪ #25		Pb #23		
NAT		ATORY			UNCLA	ASSE	Total
	CONTRACTOR OF THE PARTY						

Bottom Portion of the Core							
Pb #12	Pb #12						
Pb #11	Pb #9	Рь #37					
HEU (10487)		HEU (B-2444-36)					
Pb #12	Pb #15	Pb #52					
Pb #13	Pb #14	Pb #54					
Pb #7	Pb #16	Pb #59					
Pb #8	Pb #10	Pb #38					
HEU (10467)	HEU (10467)						
Pb #9	Pb #13	Pb #60					
Pb #10	Pb #11	Pb #45					
Pb #5	Pb #5	Pb #33					
Pb#4	Pb#6	Pb #36					
HEU (10475)		HEU (B-2444-02)					
Pb #3	Pb #7	Pb #47					
Pb #2	Pb #8	Pb #57					
Pb #6	Pb #1	Pb #40					
Pb #16	Pb #2	Pb #35					
HEU (10464)		HEU (B-2444-01)					
Pb #1	Pb #3	Pb #34					
Pb #14	Pb #4	Pb #39					
Рь #17	Pb #17						
Pb #14	Pb #14						
HEU (10470)	HEU (10470)						
Pb #5	Pb #5						
Pb #3	Pb #3						
Pb #6	Pb #6						
Pb #13	Pb #13						
HEU (10489)	HEU (10489)						
РЬ #7	Pb #7						
Pb #4	Pb #4						
Pb #15	Pb #15						
Pb #8	Pb #8						
HEU (10491)	HEU (10491)						
Pb #1	Pb #44						
Pb #18	Pb #18						
Pb #11	Pb #11						
Al	HEU (10472)	Al					
Pb #9 Pb #56							
Total Uranium Mass 179,014.0 g,							

ATIONAL LABORATORY

Results (Computational vs Experimental)

Experimental Results

 $\alpha(dc) = -37,932 \text{ s}^{-1}$ (No glue) $\alpha(dc) = -33,951 \text{ s}^{-1}$ (Glue)

MCNP α(dc) = -43,667 s⁻¹ (No glue) Thermal: 0.00% Intermediate: 23.27% Fast: 76.73%

α(dc) = -37,934 s⁻¹ (Glue) Thermal: 0.00% Intermediate: 26.56% Fast: 73.44%

UNCLASSIFIED

Results and Comparisons

Assemblies	α (dc)	<i>l</i> (neutron lifetime)				
Lady Godiva (bare Oy-94)	-1.1 x 10 ⁶ s ⁻¹	5.9 x 10 ⁻⁹ s				
Godiva IV (bare Oy-93 and 1.5 wt% Mo)	-8.4 x 10 ⁵ s ⁻¹	7.7 x 10 ⁻⁹ s				
Topsy (Oy-94 in thick NU)	-3.7 x 10 ⁵ s ⁻¹	1.75 x 10 ⁻⁸ s				
Zeus (all-oralloy reflected with copper	-8.3 x 10 ⁴ s ⁻¹	7.86 x 10 ⁻⁸ s				
HEU-Lead (no Hybond)	-37,932 s ⁻¹	1.82 x 10 ⁻⁷ s				
HEU-Lead (Hybond)	-33,951 s⁻¹	2.02 x 10 ⁻⁷ s				
SHEBA (Solution High Energy Burst Assembly	-200 s ⁻¹	4.0 x 10 ⁻⁵ s				
Los Alamos						

Topsy

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

NATIONAL LABORATORY

Conclusions

• The Rossi- α at delayed critical for this experiment compares quite well with other α 's from other assemblies.

- Neutron lifetime compares quite well with those from other assemblies.
- There is a significant difference between the computational and experimental Rossi- α at delayed critical values.

UNCLASSIFIED

"This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy."

UNCLASSIFIED

