IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Preliminary design of the TEX-MOX using optimization algorithms

M. Brovchenko, I. Duhamel, R. Salmon*, Y. Richet

Institut de Radioprotection et de Sûreté Nucléaire, France *IRSN Subcontractor (URANUS SAS) ANS Winter Meeting 2016

Las Vegas

9th of November 2016

Critical benchmarks need

Established international criticality safety data need for thermal, epithermal and intermediate energy range critical benchmarks

M. Brovchenko

TEX (Thermal/Epithermal eXperiments) program

NEED:

Intermediate spectrum experiments

Consensus prioritization of nuclear data needs (in order):

²³⁹Pu, ²⁴⁰Pu, ²³⁸U, ²³⁵U, Temperature variations, Water density variations,
Steel, Lead (reflection), Hafnium, Tantalum, Tungsten, Nickel,
Molybdenum, Chromium, Manganese, Copper, Vanadium, Titanium, and
Concrete (reflection, characterization, and water content)

Integral experiment requests:

TEX-MOX experiments goal:

Represent as close as possible low moderated MOX powder mixtures

with heterogeneous plates configurations based on **existing fuel plates**

PROMETHEE developed at IRSN

- Launcher-parametrizer tool using several codes (SCALE, MORET,...)
- Embeds ECEGO, an optimization algorithm

It allows maximizing an output value (sensitivities to nuclear data, fission rate,...) while keeping parameters of interest (k_{eff}, pitch,...) comprised in a given interval

Considers the criticality (numerical) model Searches for a design point:

How to find this **optimal design point**?

- True practical constraints:
 - more than 2 input parameters (say 5)
 - non-linear I/O behavior
 - 20' cpu per calculation
 - Building the whole response surfaces for 5 parameters requires:
 10 [pt/dim] ^ 5 [dim] * 20 ['cpu] = 1400 days.cpu
 - Build a good response surface surrogate (kriging) Good means "refined in interesting zones"

Model based on kriging

"Kriging"

= interpolate few calculations to get a response surface
... with uncertainty

ECEGO algorithm

- iteratively enriches the calculations list, in order to converge toward the best possible design point
- reaches convergence with ~1000 points = 5 days.cpu

RS

ECEGO optimization algorithm

ECEGO optimization algorithm

Optimization of TEX-MOX configurations

Experimental constraints:

Materials allowed in PLANET/COMET
Number of fuel plates (PUMN)
Max size in PLANET machine

Model simplification for optimization:

Fuel plates considered as continuous medium

Varied parameters:

Reflector thickness
Moderator thickness
Fuel area for one layer
Number of layers

Maximize the Intermediate fission rate & Configurations are critical

Release constraints/Add parameters

If results unsatisfying

Preliminary design of the TEX-MOX using optimization algorithms

9

RSI

Optimization of TEX-MOX configurations

Experimental constraints:

Materials allowed in PLANET/COMET
Number of fuel plates (PUMN)
Max size in PLANET machine

Model simplification for optimization:

Fuel plates considered as continuous medium

Varied parameters:

Reflector thickness
Moderator thickness central layers
Moderator thickness external layers
Fuel area for one layer
Number of central layers
Number of external layers

If results unsatisfying

Second model:

Maximize the Intermediate fission rate & Configurations are critical

Release constraints/Add parameters

Results analysis

Projection of the kriging model for each input parameter Red line = model of the value of interest (k_{eff} or fission rate) Blue point = true calculation

Results analysis

- Interesting areas at the limits of the input parameters
- Reconsider fixed (experimental) constraints

Configurations selection

Configurations selection

- > 1.1 > k_{eff} > 1.0
- Intermediate fission rate > 50% \triangleright
- Not higher than 100 % of fissile available \geq

TEX-MOX configurations

Optimization tested with different materials \implies 3 materials (moderator & reflector) satisfy the requirements: Borated Polyethylene, Alumina, Polyethylene

Spectrum modification

fixes fuel layer dimensions

Optimization for intermediate configuration \square

 Al_2O_3 moderator thickness variation \square spectrum modification Al2O3_Al2O3-Selection4.sdf pu-239 fission 0,18 Integral Value = $0.5641523 \pm 6.929646E-4$ Al2O3_Al2O3_N25-R_t0-T0.sdf pu+239 fission 0.16 Integral Value = $0.5632303 \pm 0.001341859$ Sensitivity per Unit Lethargy Al2O3_Al2O3_N25-R_t25-T1.sdf pu-239 fission 0,14 Integral Value = $0.5900094 \pm 0.001283116$ Al2O3_Al2O3_N30-R_t25-T2.sdf pu-239 fission 0,12 Integral Value = $0.5846807 \pm 0.001119068$ 0,10 k_{eff} sensitivity to ²³⁹Pu fission 0,08 0,06 0,04 0,02 0,00 1.0E-04 1,0E-021,0E00 1.0E02 1,0E04 1,0E06 Energy (eV) No thermal, no epithermal configurations Fast & intermediate spectrum

Spectrum modification

Borated PE moderator thickness variation

spectrum modification

Spectrum modification

PE moderator thickness variation

 \Rightarrow spectrum modification

Optimization on ²⁴⁰Pu capture

- > PUMN plates (12% ²⁴⁰Pu) replaced by PUMH (26% ²⁴⁰Pu) plates
- > Optimized on the ²⁴⁰Pu capture reaction rate in the intermediate energy range

Use of PUMH plates & optimizing on ²⁴⁰Pu capture allow increase sensitivity to ²⁴⁰Pu capture

IRS

Conclusion & Perspectives

TEX-MOX experiments

- Goal: set of experiments with varying spectrum, varying Pu/(U+Pu) content, varying ²⁴⁰Pu content
- > CED-1 report in progress: overview of studied configurations, preliminary designs
- > Comparison of sensitivity profiles to application case \rightarrow representative ?
- Experimental uncertainties
- > Final designs ...

Critical experiments design optimization with PROMETHEE

- > Allows rapidly finding interesting configurations ("trade-off" points)
- > Especially interesting with many input parameters (here up to 7)
- Optimization algorithm based on 2 output parameters (k_{eff} + reaction rate in a given energy interval, ...)

IRSI

Thank you for your attention!

