1

ANS 2017 Annual Meeting San Francisco, CA 11-15 June 2017

## LANL-SNL Collaboration on NCS Validation

LA-UR-17-21889





Forrest Brown<sup>1</sup>, John Miller<sup>2</sup>, Shawn Henderson<sup>2</sup>, Michael Rising<sup>1</sup>, Jennifer Alwin<sup>1</sup>

<sup>1</sup> LANL, <sup>2</sup> SNL

## Background

#### • **2015**

- Miller: SNL report on NCS validation
- Brown: requested copies of benchmarks
- Brown: UNM Professor, teaching Monte Carlo class
- Henderson: UNM student in MC class, intern at SNL



#### • 2016

- Miller
  - Challenged by NCS validation for old U-Gd fuel
  - Interested in using Whisper to identify proper benchmark catalog

#### – Henderson

- Changed SNL internship to NCS with Miller
- Graduated from UNM Nuclear Engineering
- Summer work at SNL, Whisper applications, with Miller/Brown
- First use of Whisper outside of LANL
- Now NCS staff

## **MCNP6 & Whisper – Overview**

From LA-UR-16-23757



## **Collaboration Activities**

- Test preliminary release of the MCNP6-Whisper, with feedback to the developers
- Share benchmark catalogs (1101 LANL cases, 866 SNL cases)
- Compare 357 benchmarks common to both catalogs
- Investigate the impact of the different benchmark catalogs on sensitivityuncertainty based NCS validation results from MCNP6-Whisper
- Investigate the impact of randomized selections from the benchmark catalog on sensitivity-uncertainty based validation results from MCNP6-Whisper
- Investigate the use of MCNP6-Whisper in selecting benchmarks for use in NCS validation for unique, nonstandard, legacy fuel applications

## **MCNP6-Whisper Testing**

#### Whisper

- Statistical analysis code to determine baseline USLs
- Uses sensitivity profiles from continuous-energy MCNP6
- Uses covariance data for nuclear cross-sections
  - ① Automated, physics-based selection of benchmarks that are neutronically similar to the application, ranked & weighted
  - **②** Bias + bias uncertainty from Extreme Value Theory
  - ③ Margin for nuclear data uncertainty estimated by GLLS method

#### SNL testing

- MCNP6.1.1, Whisper-1.1, ENDF/B-VII.1 data
- Whisper-1.1
  - Upgrade from original Whisper portable to Mac, Windows, Linux
- First non-LANL, independent testing, on different computers
  - Henderson very capable, but new to NCS
  - No trouble installing & applying to SNL applications
  - Provided valuable feedback to LANL on details & a few minor fixes
  - Lessons-learned were addressed for upcoming Whisper release

## **Sharing Benchmark Catalogs**

- LANL catalog of 1101 ICSBEP problems
  - 1086 from 2014 validation for PF4
  - 15 new cases from LANL NCS, some corrections to previous problems
- SNL catalog of 866 ICSBEP problems
  - 265 from 2015 validation report
  - 601 from Miller & others, currently under review
  - SNL updated all benchmarks to current recommendations:
    - Use isotopes (not elements)
    - ENDF/B-VII.1 cross-section data, with continuous  $S(\alpha,\beta)$
    - Follow "Best Practices"
      - Shannon entropy checks on convergence
      - Use at least 10,000 neutrons/cycle & at least 100 active cycles

## **Comparison of Benchmark Catalogs** (1)

- 357 cases were common to the LANL & SNL benchmark catalogs
- Is there any evidence of "analyst bias" or "site bias" ?
  - Different analysts at different sites set up the 357 common benchmarks independently based on ICSBEP specifications
  - The benchmarks were run using the same code, the same nuclear data, and the same Monte Carlo "best practices"
  - Any bias determined from the 357 common cases would suggest differences due to analyst modeling procedures

Table 1. Comparison of common benchmarks

|                | $Bias \pm Std.Dev$    |
|----------------|-----------------------|
| 357 LANL cases | $0.00175 \pm 0.00024$ |
| 357 SNL cases  | $0.00179 \pm 0.00021$ |
| Ave. SNL-LANL  | $0.00004 \pm 0.00010$ |

- No apparent evidence of "analyst bias", but still investigating

## Comparison of Benchmark Catalogs (2)

Comparison of computed k<sub>eff</sub> for the 357 common benchmarks

#### – 339 agreed within 0.001 $\Delta k$

| range for  k <sub>SNL</sub> -k <sub>LANL</sub> | Number of cases |  |
|------------------------------------------------|-----------------|--|
| < 0.001                                        | 339             |  |
| 0.001 - 0.002                                  | 8               |  |
| 0.002 - 0.003                                  | 3               |  |
| 0.003 - 0.004                                  | 1               |  |
| 0.004 - 0.005                                  | 1               |  |
| > 0.005                                        | 5               |  |

Table 2. Distribution of differences in common cases

#### - The 18 cases with differences greater than 0.001 $\Delta k$ are being reviewed:

- A few differ due to including impurities, or not
- A few differ due to simplified vs detailed geomtetry
- A few may have errors
- Detailed review is still in progress

This type of review & QA is new & valuable to LANL & SNL & NCSP

## Impact of Benchmark Catalogs on USL Results

- For a few applications, baseline USLs were computed using MCNP6-Whisper using different benchmark catalogs
  - SNL catalog only (866 cases)
  - LANL catalog only (1101 cases)
  - SNL catalog, with non-duplicate additions from LANL (1610 cases)
  - LANL catalog, with non-duplicate additions from SNL (1610 cases)
- For 1 specific SNL application

Table 3. Catalog USL calculations

| Benchmark<br>Catalog | Highest C <sub>k</sub> | Bias+Bias<br>Uncertainty | Whisper<br>Baseline-USL |  |
|----------------------|------------------------|--------------------------|-------------------------|--|
| SNL                  | 0.9902                 | 0.01624                  | 0.97747                 |  |
| LANL                 | 0.9924                 | 0.01715                  | 0.97656                 |  |
| SNL+LANL             | 0.9924                 | 0.01691                  | 0.97680                 |  |
| LANL+SNL             | 0.9924                 | 0.01691                  | 0.97680                 |  |

- Results agree very well, but of course further studies are needed

## Impact of Randomized Benchmark Catalogs

- Seven applications related to the LANL PF4 Facility were chosen
  - Each was run with Whisper 25 times using the LANL catalog
  - For each of the 25 runs for a case, 50% of the benchmark cases were selected randomly and excluded from the Whisper calculations
  - The minimum, average, and maximum of the 25 USLs for each case are:

| Application                                                                                                                                                                                                          | Whisper baseline USL |       |       |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|-------|--|--|--|
| Application                                                                                                                                                                                                          | Min                  | Ave   | Max   |  |  |  |
| 1 - Pu cylinder, H/D=0.5                                                                                                                                                                                             | 0.978                | 0.979 | 0.981 |  |  |  |
| 2 - Pu cylinder, H/D=3.0                                                                                                                                                                                             | 0.977                | 0.979 | 0.980 |  |  |  |
| 3 - Pu annulus, H/D=1.0, IR=0.001                                                                                                                                                                                    | 0.978                | 0.979 | 0.981 |  |  |  |
| 4 - Pu annulus, H/D=1.0, IR=0.5                                                                                                                                                                                      | 0.978                | 0.979 | 0.981 |  |  |  |
| 5 - Pu – NaCl sphere, 1" water refl                                                                                                                                                                                  | 0.975                | 0.977 | 0.978 |  |  |  |
| 6 - Pu sphere, 0.01 cm Ta reflector                                                                                                                                                                                  | 0.978                | 0.979 | 0.981 |  |  |  |
| 7 - Pu sphere, 5.0 cm Ta reflector                                                                                                                                                                                   | 0.924                | 0.929 | 0.933 |  |  |  |
| <ul> <li>All cases used 4500 g of Pu-239</li> <li>Cases 1-4 used 2.54 cm radial water reflector</li> <li>Cases 3-4 used water in center of annulus</li> <li>Cases 6.7 used spherical Pu with Ta reflector</li> </ul> |                      |       |       |  |  |  |

Table 4. Whisper results for 25 repetitions using random 50% of benchmark catalog

- Cases 1-6 agreed well, insensitive to variations in benchmark catalog

– Case 7 more sensitive, but reflects the lack of Ta-reflected benchmarks

Despite variations in benchmark catalog, Whisper selects best matches

## **Benchmark Selection for Nonstandard Applications**

#### One of the drivers for the collaboration

- SNL needed to evaluate some applications involving legacy uraniumgadolinium fuel
  - Was the recent 2015 SNL validation applicable?
  - Initial MCNP-Whisper analysis indicated NO
    - Traditional SNL validation did not adequately cover neutronics of the U-Gd fuel
    - Whisper correlation coefficients with traditional validation catalog were low

#### SNL added 77 additional ICSBEP benchmarks containing Gd to their catalog

- Whisper was happy good correlations found between U-Gd fuel applications & expanded benchmark catalog
- This effort will be written-up & reported separately, since it provides valuable "lessons-learned"

## Sensitivity-uncertainty tools can provide valuable quantitative evidence regarding the adequacy of the benchmark catalog for validation

### Summary

- Benefits of the collaboration
  - Additional QA, testing, and checking of the benchmark catalogs
  - Identification of specific benchmarks that warrant further detailed review.
  - Combined effort eases the task of expanding the benchmark catalogs for use in NCS validation.
  - Feedback from independent, external testing of a new software package (Whisper) strengthens the usability and SQA. Lessons-learned can be dealt with prior to the official public release of the software.
  - Initial comparisons suggest that no apparent "analyst bias" is present between the NCS validation work at the respective sites.
  - Different sets of benchmarks in the catalogs have only small effects on the baseline USLs determined by the MCNP6-Whisper methodology

## **Future Work**

- The LANL-SNL collaboration work to date has benefitted both sites, and both are interested in continuing this work.
- The preliminary results to date suggest a number of worthy areas for additional collaboration:
  - Expand both benchmark catalogs
  - Perform more real-world application testing on the use of MCNP6-Whisper based NCS validation, including comparisons with traditional NCS validation methods
  - Perform further detailed analysis using the different benchmark catalogs, to thoroughly investigate the notion of "analyst bias"
  - Explore the use of the MCNP6-Whisper methodology for applications where there are not a sufficient number of ICSBEP benchmarks available

Work supported by: US DOE-NNSA Nuclear Criticality Safety Program

# **Questions**?