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Introduction

• Due to the accident at Fukushima there is renewed interest
in accident tolerant fuel (ATF).

• 2012 - Congress laid out a schedule for development of
ATF to be tested in a commercial reactor by 2022.

• Idaho National Lab’s (INL) Transient Reactor Test Facility
(TREAT) will be performing ATF testing and is scheduled
for restart in 2018

• Pre-test calibrations are required before evaluation of fuel
can begin

• Full core TREAT simulations to understand the pre-test
core and minimize required calibrations

• To simulate TREAT with a high degree of precision the
reactor materials must also be modeled with a high degree
of precision
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Transient Reactor Test Facility (TREAT) Overview

• Air-cooled, graphite
moderated

• Simulate accident
conditions

• No resultant core damage

• UO2 fuel particles in
graphite matrix

• 93.1% HEU
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Graphite Uncertainty

• Graphite matrix isn’t just graphite

• Only 59% of carbon in fuel is graphite.

• Crystal structure is a complex mixture of graphite particles
in non-graphitized elemental carbon matrix

• How is this important?
• Graphite/carbon matrix acts as moderator
• Graphitized and non-graphitized carbon have different

scattering cross sections
• Effects moderation
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Graphite Uncertainty

• Found to be 59% ± 1%
graphite to total carbon
ratio (GCR)

• Most of TREAT core is
graphite/carbon matrix
fuel elements

• Is this material uncertainty
a concern for simulation?
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Boron Uncertainty

• Material blocks used to construct the fuel only had a boron
content very close to 1 ppm

• Fuel contains boron impurity of 5.90 ± 0.35 ppm

• How did this happen?
• Diffusion of boron from borated steel divider plates in

baking crucibles used in manufacturing fuel

• Why does this matter?
• Boron is a strong neutron absorber
• Small differences in boron can affect criticality
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Our Problem

Does this uncertainty in
materials effect our ability to

simulate TREAT?
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KENO-VI TREAT Models

• Model created with
KENO-VI

• Model based on the
M8CAL configuration.

• ENDF/B-VII.1 238 M.G.
cross section library
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KENO-VI TREAT Models

• 9 Models with same geometry, but different material
compositions

• 3 Boron groups each with 3 graphite to carbon ratio
(GCR) values

• Evaluated at given value, upper bound, and lower bound

Boron Concentration (ppm)

GCR 5.55 5.90 6.25

0.58 Model 1 Model 2 Model 3

0.59 Model 4 Model 5 Model 6

0.60 Model 7 Model 8 Model 9
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Results - Pre-transient Core keff

• Each model evaluated with KENO-VI from SCALE 6.2.1

• 5000 generations, 500 skipped generations, and 20000
particles per generation

Boron (ppm) GCR keff
5.55 0.58 0.998748±0.000086

5.55 0.59 0.998389±0.000089

5.55 0.60 0.998168±0.000086

5.90 0.58 0.9958145±0.000085

5.90 0.59 0.995317±0.000085

5.90 0.60 0.995224±0.000084

6.25 0.58 0.992791±0.000089

6.25 0.59 0.992341±0.000094

6.25 0.60 0.992209±0.000087
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Results - Pre-transient Core keff

• Increased GCR yields decrease in keff

• Max difference in keff due to GCR ≈ 6× 10−4
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Results - Pre-transient Core keff

• Increased boron impurity yields decrease in keff

• Max differences in keff due to boron impurity ≈ 6× 10−3

Boron (ppm) GCR keff
5.55 0.58 0.998748±0.000086

5.55 0.59 0.998389±0.000089

5.55 0.60 0.998168±0.000086

5.90 0.58 0.9958145±0.000085

5.90 0.59 0.995317±0.000085

5.90 0.60 0.995224±0.000084

6.25 0.58 0.992791±0.000089

6.25 0.59 0.992341±0.000094

6.25 0.60 0.992209±0.000087
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Simulation of Transient #2855

• Simulation of temperature-limited transient #2855 from
M8CAL.

• Experiment designed to aid in calibration of TREAT core.

• Initial power of 10W

• 60 second transient time

• Transient rods removed at t=0, completely removed by
0.13 seconds, and remain so for the duration of the
experiment.
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Simulation of Transient #2855

• Evaluated with T-ReX (formerly TDKENO),
time-dependent neutron transport code

• Run on University of Florida’s HiperGator computer on 64
cores

• 5000 generations, 500 skipped generations, and 20000
particles per generation

• ENDF/B-VII.1 238 M.G. cross section library
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Results - Boron - Peak Power

• Higher peak power with lower boron concentration
• Difference in peak power between 5.55 ppm and 6.25 ppm

was 108 MW
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Figure: Power vs Time - 59% Graphite
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Results - Boron - Yield

• Higher yield with lower boron concentration
• Difference in final yield between 5.90 ppm and 6.25 ppm

was 12.18 MJ
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Figure: Yield vs Time - 59% Graphite
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Results - Graphite - Yield

• Clear trend in keff vs GCR of pre-transient core

• But not for final yield
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Figure: Yield vs Time - 5.90 ppm Boron
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Results - Graphite - Peak Power

1.45 1.50 1.55 1.60
Time (s)

1860

1880

1900

1920

1940

1960

1980
P
o
w

e
r 

(M
W

)
60% graphite

59% graphite

58% graphite

Figure: Power vs Time - 5.90 ppm Boron
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Results - Graphite - Peak Power

• Need further work to verify graphitization effects
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Figure: Power vs Time - 6.25 ppm Boron
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Conclusion

• Uncertainty in boron content effects ability to simulate
TREAT

• ± 0.35 ppm boron corresponds to ± 50 MW peak power
and ± 12 MJ final yield

• ± 2.5% peak power, ± 1.5% final yield

• Need further work to verify effect of graphitization
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Questions?
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