

TREAT Graphite Boron Problem Models

2855

Conclusion

Effects of Boron and Graphite Uncertainty in Fuel for TREAT Simulations

Kyle Vaughn* , Zander Mausolff* , Esteban Gonzalez* , Mark DeHart[†], Sedat Goluoglu*

*Nuclear Engineering Program, University of Florida [†]Nuclear Systems Design and Analysis Department Idaho National Laboratory

A (1) < A (1) < A (1) </p>

June 14th, 2017 kylecv@ufl.edu*

June 13, 2017

TREAT

Graphite

Boron

Problem

Models

к

2855

Conclusion

- Due to the accident at Fukushima there is renewed interest in accident tolerant fuel (ATF).
- 2012 Congress laid out a schedule for development of ATF to be tested in a commercial reactor by 2022.
- Idaho National Lab's (INL) Transient Reactor Test Facility (TREAT) will be performing ATF testing and is scheduled for restart in 2018
- Pre-test calibrations are required before evaluation of fuel can begin
- Full core TREAT simulations to understand the pre-test core and minimize required calibrations
- To simulate TREAT with a high degree of precision the reactor materials must also be modeled with a high degree of precision

- Graphite
- Boron
- Problem
- Models
- к
- 2855
- Conclusion

- Due to the accident at Fukushima there is renewed interest in accident tolerant fuel (ATF).
- 2012 Congress laid out a schedule for development of ATF to be tested in a commercial reactor by 2022.
- Idaho National Lab's (INL) Transient Reactor Test Facility (TREAT) will be performing ATF testing and is scheduled for restart in 2018
- Pre-test calibrations are required before evaluation of fuel can begin
- Full core TREAT simulations to understand the pre-test core and minimize required calibrations
- To simulate TREAT with a high degree of precision the reactor materials must also be modeled with a high degree of precision

- Graphite
- Boron
- Problem
- Models
- к
- 2855
- Conclusion

- Due to the accident at Fukushima there is renewed interest in accident tolerant fuel (ATF).
- 2012 Congress laid out a schedule for development of ATF to be tested in a commercial reactor by 2022.
- Idaho National Lab's (INL) Transient Reactor Test Facility (TREAT) will be performing ATF testing and is scheduled for restart in 2018
- Pre-test calibrations are required before evaluation of fuel can begin
- Full core TREAT simulations to understand the pre-test core and minimize required calibrations
- To simulate TREAT with a high degree of precision the reactor materials must also be modeled with a high degree of precision

- Graphite
- Boron
- Problem
- Models
- к
- 2855
- Conclusion

- Due to the accident at Fukushima there is renewed interest in accident tolerant fuel (ATF).
- 2012 Congress laid out a schedule for development of ATF to be tested in a commercial reactor by 2022.
- Idaho National Lab's (INL) Transient Reactor Test Facility (TREAT) will be performing ATF testing and is scheduled for restart in 2018
- Pre-test calibrations are required before evaluation of fuel can begin
- Full core TREAT simulations to understand the pre-test core and minimize required calibrations
- To simulate TREAT with a high degree of precision the reactor materials must also be modeled with a high degree of precision

- Graphite
- Boron
- Problem
- Models
- к
- 2855
- Conclusion

- Due to the accident at Fukushima there is renewed interest in accident tolerant fuel (ATF).
- 2012 Congress laid out a schedule for development of ATF to be tested in a commercial reactor by 2022.
- Idaho National Lab's (INL) Transient Reactor Test Facility (TREAT) will be performing ATF testing and is scheduled for restart in 2018
- Pre-test calibrations are required before evaluation of fuel can begin
- Full core TREAT simulations to understand the pre-test core and minimize required calibrations
- To simulate TREAT with a high degree of precision the reactor materials must also be modeled with a high degree of precision

- Graphite
- Boron
- Problem
- Models
- к
- 2855
- Conclusion

- Due to the accident at Fukushima there is renewed interest in accident tolerant fuel (ATF).
- 2012 Congress laid out a schedule for development of ATF to be tested in a commercial reactor by 2022.
- Idaho National Lab's (INL) Transient Reactor Test Facility (TREAT) will be performing ATF testing and is scheduled for restart in 2018
- Pre-test calibrations are required before evaluation of fuel can begin
- Full core TREAT simulations to understand the pre-test core and minimize required calibrations
- To simulate TREAT with a high degree of precision the reactor materials must also be modeled with a high degree of precision

Transient Reactor Test Facility (TREAT) Overview

- Graphite
- Boron
- Problem
- Models
- к
- 2855
- Conclusion
- Air-cooled, graphite moderated
- Simulate accident conditions
- No resultant core damage
- *UO*₂ fuel particles in graphite matrix
- 93.1% HEU

Graphite Uncertainty

TREAT

Graphite

- Boron
- Problem
- Models
- к
- 2855
- Conclusion

- Graphite matrix isn't just graphite
- Only 59% of carbon in fuel is graphite.
- Crystal structure is a complex mixture of graphite particles in non-graphitized elemental carbon matrix
- How is this important?
 - Graphite/carbon matrix acts as moderator
 - Graphitized and non-graphitized carbon have different scattering cross sections
 - Effects moderation

Graphite Uncertainty

TREAT

Graphite

- Boron
- Problem
- Models
- к
- 2855
- Conclusion
- Found to be $59\% \pm 1\%$ graphite to total carbon ratio (GCR)
- Most of TREAT core is graphite/carbon matrix fuel elements
- Is this material uncertainty a concern for simulation?

Boron Uncertainty

- Graphite
- Boron
- Problem
- Models
- к
- 2855
- Conclusion

- Material blocks used to construct the fuel only had a boron content very close to 1 ppm
- Fuel contains boron impurity of 5.90 \pm 0.35 ppm
- How did this happen?
 - Diffusion of boron from borated steel divider plates in baking crucibles used in manufacturing fuel
- Why does this matter?
 - Boron is a strong neutron absorber
 - Small differences in boron can affect criticality

Our Problem

TREAT Graphite Boron Problem

Models

к

2855

Conclusion

Does this uncertainty in materials effect our ability to simulate TREAT?

KENO-VI TREAT Models

- TREAT Graphite Boron
- Problem
- Models
- к
- 2855
- Conclusion
- Model created with KENO-VI
- Model based on the M8CAL configuration.
- ENDF/B-VII.1 238 M.G. cross section library

イロト イポト イヨト イヨト

KENO-VI TREAT Models

- TREAT
- Graphite
- Boron
- Problem
- Models
- κ
- 2855
- Conclusion

- 9 Models with same geometry, but different material compositions
- 3 Boron groups each with 3 graphite to carbon ratio (GCR) values
- Evaluated at given value, upper bound, and lower bound

	Boron Concentration (ppm)		
GCR	5.55	5.90	6.25
0.58	Model 1	Model 2	Model 3
0.59	Model 4	Model 5	Model 6
0.60	Model 7	Model 8	Model 9

Results - Pre-transient Core k_{eff}

- Graphite
- Boron
- Problem
- Models
- κ
- 2855
- Conclusion

- Each model evaluated with KENO-VI from SCALE 6.2.1
- 5000 generations, 500 skipped generations, and 20000 particles per generation

Boron (ppm)	GCR	k_{eff}
5.55	0.58	$0.998748 {\pm} 0.000086$
5.55	0.59	0.998389 ± 0.000089
5.55	0.60	$0.998168 {\pm} 0.000086$
5.90	0.58	$0.9958145 {\pm} 0.000085$
5.90	0.59	$0.995317 {\pm} 0.000085$
5.90	0.60	$0.995224 {\pm} 0.000084$
6.25	0.58	$0.992791 {\pm} 0.000089$
6.25	0.59	$0.992341 {\pm} 0.000094$
6.25	0.60	0.992209±0.000087

Results - Pre-transient Core k_{eff}

- TREAT
- Graphite
- Boron
- Problem
- Models
- к
- 2855
- Conclusion

- Increased GCR yields decrease in k_{eff}
- Max difference in k_{eff} due to ${\rm GCR}\approx 6\times 10^{-4}$

Boron (ppm)	GCR	k_{eff}
5.55	0.58	0.998 748 ±0.000086
5.55	0.59	0.998 389 ±0.000089
5.55	0.60	0.998 168 ±0.000086
5.90	0.58	0.995 8145 ±0.000085
5.90	0.59	0.995 317 ±0.000085
5.90	0.60	0.995 224 ±0.000084
6.25	0.58	0.992 791 ±0.000089
6.25	0.59	0.992 341 ±0.000094
6.25	0.60	0.992 209 ±0.000087

Results - Pre-transient Core k_{eff}

- TREAT
- Graphite
- Boron
- Problem
- Models
- к
- 2855
- Conclusion

- Increased boron impurity yields decrease in k_{eff}
- Max differences in k_{eff} due to boron impurity $pprox 6 imes 10^{-3}$

Boron (ppm)	GCR	k_{eff}
5.55	0.58	$0.998748 {\pm} 0.000086$
5.55	0.59	0.99 8389 ±0.000089
5.55	0.60	$0.998168 {\pm} 0.000086$
5.90	0.58	$0.9958145 {\pm} 0.000085$
5.90	0.59	0.99 5317 ±0.000085
5.90	0.60	$0.995224{\pm}0.000084$
6.25	0.58	$0.992791 {\pm} 0.000089$
6.25	0.59	0.99 2341 ±0.000094
6.25	0.60	0.992209 ± 0.000087

Simulation of Transient #2855

- Graphite
- Boron
- Problem
- Models
- К
- 2855
- Conclusion

- Simulation of temperature-limited transient #2855 from M8CAL.
- Experiment designed to aid in calibration of TREAT core.
- Initial power of 10W
- 60 second transient time
- Transient rods removed at t=0, completely removed by 0.13 seconds, and remain so for the duration of the experiment.

Simulation of Transient #2855

TREAT

- Graphite
- Boron
- Problem
- Models
- к
- 2855
- Conclusion

- Evaluated with T-ReX (formerly TDKENO), time-dependent neutron transport code
- Run on University of Florida's HiperGator computer on 64 cores
- 5000 generations, 500 skipped generations, and 20000 particles per generation
- ENDF/B-VII.1 238 M.G. cross section library

Results - Boron - Peak Power

TREAT

- Graphite
- Boron
- Problem
- Models
- к
- 2855
- Conclusion

- Higher peak power with lower boron concentration
- Difference in peak power between 5.55 ppm and 6.25 ppm was 108 MW

Results - Boron - Yield

- TREAT
- Graphite
- Boron
- Problem
- Models
- к
- 2855
- Conclusion

- Higher yield with lower boron concentration
- Difference in final yield between 5.90 ppm and 6.25 ppm was 12.18 MJ

Results - Graphite - Yield

- TREAT
- Graphite
- Boron
- Problem
- Models
- к
- 2855
- Conclusion

- Clear trend in k_{eff} vs GCR of pre-transient core
- But not for final yield

Figure: Yield vs Time - 5.90 ppm Boron

Results - Graphite - Peak Power

Problem

```
Models
```

к

2855

```
Conclusion
```


Figure: Power vs Time - 5.90 ppm Boron

Results - Graphite - Peak Power

- TREAT
- Graphit
- Boron
- Problem
- Models
- к
- 2855
- Conclusion

• Need further work to verify graphitization effects

Figure: Power vs Time - 6.25 ppm Boron

Conclusion

- Graphite Boron
- Problem
- Models
- к
- 2855
- Conclusion

- Uncertainty in boron content effects ability to simulate TREAT
- \pm 0.35 ppm boron corresponds to \pm 50 MW peak power and \pm 12 MJ final yield
- \pm 2.5% peak power, \pm 1.5% final yield
- Need further work to verify effect of graphitization

Grapin

Problem

Models

Κ

2855

Conclusion

Questions?

