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LA-13638 - CONTENTS

* Process Accidents
— Accident Descriptions
— Physical and Neutronic Characteristics

— Observations and Lessons Learned

» Reactor and Critical Experiment Accidents
— Fissile Solution Systems
— Bare and Reflected Metal Assemblies
— Moderated Metal or Oxide Systems
— Miscellaneous Systems

e Power Excursions and Quenching Mechanisms



CATEGORIES OF CRITICALITY
ACCIDENTS

Critical Assemblies/ |
Reactor Experiments Process Operations

~ 50,000 Experiments 22 Accldents

38 Accidents 21 Solution;
1Metal

12 Fatalities O Fatalities



Process Criticality Accidents

Total Reported = 22

Worker Fatalities= 9

Public Exposures:

Environmental
Contamination:

Equipment Damage:

21 Solutions; 1 Metal

Not health threatening;
Measured levels in only
One accident

Negligible
Negligible



CHRONOLOGY OF PROCESS ACCIDENTS

B Russian Federation B United States B United Kingdom ~ Japan

45 50 55 60 65 70 75 80 85 90 95

Figure 1. Chronology of process criticality accidents.
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Figure 2. Map of the Russian Federation showing the sites of the process criticality accidents, the capital, Moscow, and Obinisk, the location of the regulating
authority, IPPE.



UNITED STATES ACCIDENTS
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Figure 3. Map of the United States showing the sites of the process criticality accidents, and the capital, Washington.




BRITISH ACCIDENT

'

Figure 4. Map of the United Kingdom showing the site of the process criticality accident and the capital, London.



JAPANESE ACCIDENT

Figure 5. Map of Japan showing the site of the process criticality accident and the capital, Tokyo.



OBSERVATIONS

Accident Frequency: zero; 1/yr; 1/10 yrs; 77?7
Storage Operations: none

Transportation Operations: none

Significant Exposures: Only Immediate Vicinity
Shielded Operations: Negligible Exposures
None Attributed Solely to Equipment Failure



OBSERVATIONS

None Attributed to Faulty Calculations

Many Occurred During Non-Routine
Operations

Local Administrative Considerations
Determined Facility Down-time

No New Physical Phenomena



LESSONS LEARNED - OPERATIONAL

= Avoid unfavorable geometry vessels In
areas with high-concentration solutions.

= Put important instructions, information,
and procedural changes in writing.

= Understand processes thoroughly so that
credible abnormal conditions are
recognized and analyzed.



LESSONS LEARNED - OPERATIONAL

= Fissile material accountability (MC&A)
IS Integral to a good NCS program.

= QOperator understanding of NCS
Implications of proper response to process
upsets Is important.

= QOperations involving both organic and
agueous solutions require extra diligence.



LESSONS LEARNED - OPERATIONAL

= Remote readouts of radiation levels where
accidents may occur should be considered.

= Operations personnel should be made
aware of criticality hazards and stop work
policies.

= Operations personnel should be trained to
understand the basis for why they must
always follow procedures.



LESSONS LEARNED - OPERATIONAL

= Hardware that Is Important to criticality
control and whose failure or malfunction
would not necessarily be apparent to
operators should be used with caution.

= Criticality alarms and adherence to
emergency procedures have saved lives
and reduced exposures.



LESSONS LEARNED — SUPERVISORY,
MANAGERIAL AND REGULATORY

= Process supervisors should ensure that
operators are knowledgeable and capable.

= Equipment should be designed with ease
of operation as a key goal.

= Policies and procedures should encourage
self-reporting of upsets and err on the side
of learning more, not punishing more.



LESSONS LEARNED — SUPERVISORY,
MANAGERIAL AND REGULATORY

= Senior management should be aware of the
hazard of accidental criticality and its
conseguences.

= Senior management and regulators should
be aware of operations with criticality
hazards.

= Regulators should ensure that those they
regulate are knowledgeable and capable.

= Regulations should promote safe and
afficient oneratinne



CONCLUSIONS

= Likelihoods of criticality accidents are
extremely low, but will never be zero.

= Elimination of unfavorable geometry
process vessels has been a key factor

= Diligence Is required to maintain a proper,
acceptably low, accident risk while
balancing the need for process ease and

efficiency.



NEW(?) INSIGHTS

e Accident frequency down dramatically since
mid-60’s

e ANS-8 Standards and Federal Regulations
essentially unchanged for ~50 years

e We are remiss to not be reaping benefit of
lower accident likelihoods/risks
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CHRONOLOGY OF PROCESS ACCIDENTS

B Russian Federation B United States B United Kingdom ~ Japan

45 50 55 60 65 70 75 80 85 90 95

Figure 1. Chronology of process criticality accidents.



CRITICAL VOLUMES AND
CONCENTRATIONS

20 Liters - ONE
30-80 Liters - SIXTEEN
> 100 Liters - FOUR

<100 g/I - NINETEEN
>100 g/l - TWO



DELAYED CRITICAL VS PROMPT
CRITICAL ACCIDENTS

 No First Spike = 7 = “Slow Cooker”??
— All occurred in Russia — MC&A?

* Yes - First Spike (~1.0+15 fissions/l) =9

e Unknown (no data) =5



OBSERVATIONS

Criticality Accidents Do NOT Occur in
Favorable Geometry Vessels

Unfavorable Geometry Vessels ~100%
Removed from Rich Solution Process
Operations During 60’s in Both US & USSR

(Were they ever in use in UK & France?)
NO Hands-On Accidents in US since 1964

NO Hands-On Accidents in USSR since 1968



CHRONOLOGY OF PROCESS ACCIDENTS

B Russian Federation B United States B United Kingdom ~ Japan

45 50 55 60 65 70 75 80 85 90 95

Figure 1. Chronology of process criticality accidents.



CONCLUSIONS

e Accidents in Routine, Rich Solution, Process
Vessels “Essentially” Eliminated

— Thus, Slightly-Above-Delayed-Critical Accidents
with Personnel Present “Essentially” Eliminated

— That is, Slow Cooker with Personnel Present
“Essentially” Eliminated



WHAT'S LEFT?

* Upset Conditions - Seismic, Fires, ?? - Solutions
Flow; Dry Powders Become Moderated .....

 Waste Tank Operations - Unfavorable Geometry

 These situations are unlikely to expose personnel



ANS-8 AND REGULATORY
IMPLICATIONS ??

ANS-8.3 “Minimum Accident of Concern”
ANS-8.1 “Process Analysis” Subsection 4.1.2
ANS-8.10 General Intent

— Only “Shielding and confinement” .....or
— Broadly “When Personnel are not present”??

ANS-8.23 Applies to all Re-entry operations
— Including First Responders, Firefighters, etc.



ANS-8.3 - MAC

e Historically/Currently: 20 rad in one minute
at 2 meters. This guidance is ~50 years old.

 Developed to detect Slow Cooker, down to
“few cents” above delayed critical excursion

e Recent concern WG8.3 that “few cents” not
accurate; and thus that 20 rad not accurate



ANS-8.3 - MAC

e If “Slow Cooker with Personnel Present
‘Essentially’ Eliminated”

 What is a realistic, practical MAC?

 ANS-8.3 WG considering/proposing:

— (Near) Prompt critical first spike (conservatively)
consistent with Figures C.1 & C.2 of ANS-8.23

— 1.0 E+15 fissions/liter in 10-second spike
— |.e., 1.0E+14 fissions/s per liter
— Much easier to detect than 20 R/minute
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ANS-8.1 - PROCESS ANALYSIS

e Historically/Currently: “Before a new
operation with fissionable material is begun
or before an existing operation is changed, it
SHALL be determined that the entire process
will be subcritical for all normal and credible

abnormal conditions.”



ANS-8.1 - PROCESS ANALYSIS

e DOE/CSSG considering adopting and
proposing to ANS Standards:

— “... all normal conditions and, when personnel are
present, under credible abnormal conditions.
When personnel are not at significant risk from
the radiation consequences of a criticality
accident then the word ‘credible’ should be
replaced by ‘unlikely,” consistent with ANS-8.10
guidance. This requirement is not applicable to
response and recovery operations for which
guidance is provided in ANS-8.23"



ANS-8.10 - SHIELDING AND
CONFINEMENT

e DOE/CSSG considering proposing to ANS
Standards:

— Revise Title, Scope and Contents to make it
unambiguous that the standard covers all
situations (such as evacuation) when personnel
are not at risk of significant radiation exposure

from a criticality accident.

e DOE/CSSG considering adopting this (always
intended?) philosophy



ANS-8.23 - EMERGENCY PLANS
AND PROCEDURES

e DOE/CSSG considering proposing to ANS
Standards:

— Make it clear in appropriate locations in ANS-8.1
and 8.23 that 8.23 guidance applies to all re-entry
situations, including firefighters and other
emergency response personnel

e DOE/CSSG considering adopting this (always
intended?) philosophy



CONCLUSIONS

 We have been remiss in not applying lessons
learned from history

 ANS-8 and Federal Regulatory guidance
MUST be based on technical reality as we
know it and understand it

 ANS-8 and Federal Regulatory guidance
MUST be cost-effective and practical = NOT
“attempting” to attain ZERO RISK
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Figure 6. Layout of vessels and equipment in the staging area.
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OAK RIDGE, Y-12 1958
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Figure 9. Simplified diagram of the C-1 wing “
vessels and interconnecting piping involved in the

accident.
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Figure 12. Vessel in which the 1958 Los Alamos process criticality accident occurred.
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Figure 11. Configuration of solutions (aqueous and
organic) in the vessel before the accident.
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MAYAK 1960
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Figure 13. Layout of vessels in Glovebox 10 and the holding vessel external to the glovebox.
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TOMSK, SCC 1961
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TOMSK, SCC 1961
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Figure 15. Vacuum pump diagram showing oil reservoir (Dimensions are in mm).



TOMSK, SCC 1961
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HANFORD 1962

No Figure in LA-13638
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TOMSK, SCC Jan. 1963
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TOMSK, SCC Dec. 1963
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Figure 19. Schematic of vessels showing organic and aqueous solutions (nhot intended to imply the exact conditions

at the time of the accident).



WOODRIVER JCT, RI (UNF) 1964

No Figure in LA-13638
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WINDSCALE WORKS, UK 1970
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Figure 25. Process equipment related to the criticality accident.



WINDSCALE WORKS, UK 1970
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IDAHO, ICPP 1970
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Figure 27. First cycle extraction line equipment. The
accident occurred in the lower disengagement section
of the H-100 column.



TOMSK, SCC 1978
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Figure 33. Sequence of alarms and duration that the radiation levels exceeded the alarm level (36 mR/h).



TOKI-MURA, JCO, JAPAN 1999




TOKI-MURA, JCO, JAPAN 1999
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Figure 34. Authorized and executed procedures.
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