LLNL-PRES-738222

Thermal/Epithermal eXperiments with Hafnium (TEX-Hf)

Presented at the ANS NCSD Topical Meeting September 10-15, Carlsbad, NM

Tony Nelson, Catherine Percher, Will Zywiec, Dave Heinrichs Lawrence Livermore National Laboratory

Lawrence Livermore National Laboratory, P.O. Box 808, L-384, Livermore, CA 94551-0808 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Thermal/Epithermal eXperiments (TEX) Overview

TEX Goals

- New critical benchmark experiments
- Emphasis on intermediate energy range
- Create test bed: can be easily modified for different diluents

TEX-Hf Overview

- **TEX-Hf Final Design** (in review) *IER-297 CED-2*
 - Hf is a strong neutron absorber
 - Used in naval propulsion reactors
 - No benchmarks sensitive to intermediate Hf cross sections

¹⁷⁷Hf Total Neutron Cross Section

3

Jemima Plates

- Existing US asset at NCERC
- 93.13 93.5 wt% ²³⁵U enrichment
- 3 mm thickness
- 15 inch outer diameter with central holes of various sizes
- 27 disks used in TEX-Hf
- Wedge plates used to adjust reactivity

TEX-Hf Final Experiment Design

- Planet vertical lift machine
- 21 Critical Configurations
- 4 stacking methods
 - Baseline
 - Standard
 - Sandwich
 - Bunched HF

Baseline Configuration- No Hafnium

- Polyethylene reflector: 1"
- Jemima plates: 3 mm
- Polyethylene moderator plates: 0"-1.5"

PE Thickness = Neutron Energy

Standard Stacking Configuration

Sandwich Stacking Configuration

• Maximizes sensitivity in intermediate energy range

Bunched Hafnium Configuration

- Maximizes sensitivity to Hf scattering cross sections
- 12 Hf plates on top and bottom

Energy Spectrum

Energy Spectrum

Sensitivity

Sensitivity of k_{eff} to changes in cross section:

$$S_{k_{eff},\,\sigma} = \frac{\Delta k_{eff}/k_{eff}}{\Delta \sigma/\sigma}$$

• So a sensitivity of 0.1 would mean that increasing σ by X% would increase k_{eff} by 0.1*X%

- All simulations run with MCNP6 using ENDF/B-VII.1
- Sensitivity calculated using KSEN card
- For Hf, isotope sensitivities summed

Standard

14

Sensitivity- Hafnium Elastic Scatter

Sensitivity- Hafnium Inelastic Scatter

-0.24

Sensitivity- U-235 Fission

Future Work

Experiment execution planned for 2018

First:

- Purchase Hf plates
- Fabricate PE parts
- Characterize all parts

Then:

Submission to ICSBEP

Acknowledgements

- Isabelle Duhamel and Mariya Brovchenko of the Institut de Radioprotection et de Sûreté Nucléaire (IRSN)
- Dr. Michael Zerkle of Naval Nuclear Laboratory (NNL)
- This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA273444 and was funded by the U.S. Department of Energy Nuclear Criticality Safety Program.

Bonus- Hf Elastic Scattering

Uncertainty and Bias

Uncertainty

- Jemima plate mass
 - Uncertainty from previous ICSBEP benchmarks

PE mass

- Mass will be precisely measured after fabrication, reducing uncertainty
- Plate gaps
 - Height of stack will be measured before experiment to precisely determine gaps between plates
- U-235 enrichment
 - U-235 enrichment uncertainty based on standard deviation of measurements

Bias

- Room return
 - Simulations excluding room return were found to underestimate k_{eff} by 0.00161
- Plate impurities
 - Jemima: measured impurities included but they could be omitted with increase in k_{eff} of 0.00019
 - Hafnium: omitting impurities would decrease k_{eff} by 0.00090
- Hafnium isotopic composition
 - Increasing Hf-177 content by 10% reduces k_{eff} by 0.00346
 - Will precisely measure this value before experiment

Source of	Parameter	Calculated
Uncertainty	Variation	Effect, Δk _{eff}
HEU Plate Mass	+0.03%	0.00016
HEU Plate Mass	-0.03%	-0.00006
PE Moderator		
Mass	+0.005 g/cm	0.00086
PE Reflector		
Mass	+0.005 g/cm	0.00040
HEU Plate Gaps	0.00127 cm	-0.00044
U-235		
Enrichment	+0.11%	0.00042
Total		
Uncertainty	0.00114	

Conclusions

• Thermal, intermediate, and fast critical configurations were designed using available Jemima plate inventory.

Hafnium capture

- Standard stacking maximizes thermal sensitivity.
- Sandwich stacking maximizes intermediate sensitivity.
- No configuration was predominately sensitive to fast energy range.

Hafnium scatter

 Bunched hafnium configuration maximizes sensitivity to elastic and inelastic scattering at high energy.

U-235 fission

- Sensitivity in the intermediate and fast energy regime was verified.
- No configuration was predominately sensitive to thermal energy range.

U-235 capture

- Baseline configuration maximized thermal sensitivity.
- Bunched Hf configurations maximized intermediate and fast sensitivity.