IRSN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

USE OF ADVANCED OPTIMIZATION ALGORITHMS FOR THE DESIGN OF CRITICAL EXPERIMENTS

Carlsbad Section

LECLAIRE Nicolas DUHAMEL Isabelle © IRSN MONESTIER Mathieu © URANUS Company

September, 11th 2017

Contents

- 1. Context
- 2. Available experiments
- 3. Proposed design
- 4. Methodology to optimize design
- 5. Tested configurations and results
- 6. Conclusions

Need for validation of <u>molybdenum</u> in thermal and <u>epithermal</u> energy spectra

Molybdenum elements encountered in:

- Irradiated fuel as fission products (BUC in transport casks and storage)
- Alloys in research, naval or space reactors
- In reprocessing plants as UPuMoZr reprocessing plants residues

Few experiments available in thermal energy range apart from:

- French MIRTE program (proprietary): 4 lattices of rods separated by 10-mm Mo screen
- French Fission Products program: Mo-CH₂ sandwich in UO₂ lattice

Need of experiments uncorrelated with existing ones
 Nuclear data issues

Proposed design

Use of the SPRF/CX installation at SNL

- UO₂ (BUCCX or 7uPCX) rods well characterized
 - BUCCX (4.31% 235 U) outer clad ϕ = 1.3818 cm
 - 7uPCX (6.9% 235 U) outer clad ϕ = 0.6349 cm
- Constraints on the installation:
 - Tank dimensions
 - Number of rods:
 - 494 BUCCX rods (4.31% ²³⁵U)
 - 2199 7uPCX rods (6.9% ²³⁵U)

Design with BUCCX rods and foils

- Improvement of sensitivity of $k_{\rm eff}$ to ^{95}Mo capture
- Two zones: with and without foils
- Number of foils per rod, thickness of foils: variable

Design with 7uPCX rods and Mo sleeves

Sleeves of Mo surrounding 7uPCX rods
Already tested in MIRTE 2.3 for Fe and Cu
Two zones: with Mo sleeves and without
Thickness of sleeves and pitch: variable

Sleeve

Cladding

IRSN

 UO_2 rod

Use of advanced optimization algorithms for the design of critical experiments - 09/11/2017

Design with 7uPCX rods and Mo sleeves

Two zones:

- Un-sleeved cross shaped 7uPCX rods
- Sleeved rods outside the cross
- Thickness of sleeves and pitch: variable

Design with molybdenum rods

Mo metallic rods inside lattice of UO₂ rods (BUCCX or 7uPCX)

Optimization of the design

Need to optimize k_{eff} sensitivity to ⁹⁵Mo capture in thermal and epithermal energy ranges

Need to remain close to critical state

Use of the SCALE6.1 package and associated ENDF/B-VII.0 library

- Anticipate potential under-estimation of codes and nuclear data
 - Target k_{eff} = 1 + Additional margin

Many parameters monitored at the same time

- Use of advanced algorithms EGO and ECEGO via PROMETHEE workbench
 - Identify the "best" configuration in a reasonable amount of time

EGO and ECEGO algorithms

Different steps

- Parametrization of the SCALE 6.1 input decks for monitoring with PROMETHEE workbench
 - TSUNAMI-3D calculation for k_{eff} sensitivity to the capture of ⁹⁵Mo
- Optimization on both k_{eff} and sensitivity to ⁹⁵Mo capture
- Definition of a first set of calculation points
 - Step by step approach using kriging algorithms EGO and/or ECEGO

Two types of algorithms

- EGO: optimization of k_{eff} sensitivity to ⁹⁵Mo capture without constraint
- ECEGO: optimization of k_{eff} sensitivity to ⁹⁵Mo capture with k_{eff} comprised between 0.98 and 1.02

Outputs

- Response surfaces with iterations in the zones of interest
- EGO: superimposition of response surfaces to determine the optimal configuration

Surrogate function Sensitivity(pitch, R_{sleeves})

Random function

Interpolates calculated points

Gaussian predictor mean, sd:

$$\begin{split} & E[Sensitivity(pitch, R_{sleeves})] = mean(pitch, R_{sleeves}) \\ & Var[Sensitivity(pitch, R_{sleeves})] = sd(pitch, R_{sleeves})^2 \end{split}$$

criticality parameter

IRS

Surrogate function Sensitivity(pitch, R_{sleeves})

Random function

Interpolates calculated points

Gaussian predictor mean, sd: E[Sens(pitch, R_{sleeves})] = mean(pitch, R_{sleeves}) Var[Sens(pitch, R_{sleeves})] = sd(pitch, R_{sleeves})²

Convenient to estimate: E[Sens(pitch,water) > max{Sensitivity}]

criticality parameter

"Valuable" point (pitch, R_{sleeves})

Aim at reaching highest sensitivity to ⁹⁵Mo capture

criticality parameter

"Valuable" point (pitch, R_{sleeves})

Aim at reaching highest sensitivity to ⁹⁵Mo capture

Where to add next points/calculations?

criticality parameter

"Valuable" point (pitch, R_{sleeves})

Aim at reaching highest sensitivity to ⁹⁵Mo capture

Where to add next points/calculations? where is the highest E[Sens > max{Sens}]

RSI

"Valuable" point (pitch, R_{sleeves})

Aim at reaching highest sensitivity to ⁹⁵Mo capture

Where to add next points/calculations?

where is the highest E[Sens > max{Sens}]

RSI

"Valuable" point (pitch, R_{sleeves})

Aim at reaching highest sensitivity to ⁹⁵Mo capture

Where to add next points/calculations? where is the highest E[Sens > max{Sens}]

RS

"Valuable" point (pitch, R_{sleeves})

Aim at reaching highest sensitivity to ⁹⁵Mo capture

Where to add next points/calculations? where is the highest E[sens > max{sens}]

criticality parameter

RSI

"Valuable" point (pitch, R_{sleeves})

Aim at reaching highest Sensitivity to ⁹⁵Mo capture

Where to add next points/calculations? where is the highest E[Sens > max{Sens}]

In the end, we reached the highest sensitivity

RS

EGO algorithm

 \Rightarrow Maximum sensitivity to ⁹⁵Mo capture = 0.2 %/%

Use of advanced optimization algorithms for the design of critical experiments - 09/11/2017

k_{eff}

Hexagonal configuration with 27 crowns of 7uPCX rods and molybdenum

sleeves (red and blue dots correspond to measurement points)

R_{ext} sleeves (cm)

ECEGO algorithm

Tested configurations

- Mo metallic rods inside lattice of BUCCX or 7uPCX rods: not promising
- Sleeves of Mo surrounding 7uPCX rods
 - 7uPCX: number of sleeves (up to 547), sleeves thickness variable
- Metallic foils incorporated in BUCCX rods
 - BUCCX: number of foils per rod (1 to 23), thickness of foils variable

For each configurations: square or hexagonal pitch was studied and set variable

Configuration	Description	Thickness of foils/sleeves (cm)	Pitch (cm)	Integral sensitivity (%/%) ⁹⁵ Mo capture
BUCCX_18 x 18_144	Square lattice of 324 BUCCX rods with internal "test" zone of 144 BUCCX rods with Mo foils	{0.01-0.578} 0.578	{1.4-2.4} 2.02	-0.038
7uPCX_547sleeves_ 18 crowns	Hexagonal lattice of 7uPCX rods without sleeves (18 crowns) with an internal "test" zone of 547 7uPCX rods with Mo sleeves	{0.02-0.182} 0.112	{1-1.6} 1.566	-0.100

Comparison with industrial case

Sensitivity profiles close in shape and integral value to the application case, even if the sensitivity at the resonance peak still stays lower

Use of advanced optimization algorithms for the design of critical experiments - 09/11/2017

IRSIN

Conclusions

- Use of algorithms allows
 - Reducing considerably the calculation time for determining the optimal case
 - Ensuring that the optimal case is not forgotten
- Configurations involving molybdenum were determined for realization at SNL on SPRF/CX
 - Configuration with Mo sleeves around 7uPCX rods leads to best sensitivities
 - Improvement of k_{eff} sensitivity to ⁹⁵Mo capture in thermal and epithermal energy ranges compared to other available experiments
 - Partial coverage of the resonance peak of the application case (UPuMoZr in reprocessing plants residues)
 - Determination of the bias due to nuclear data of ⁹⁵Mo

Prospects

Apply the same methodology on ¹⁰³Rh to improve sensitivity of k_{eff} to ¹⁰³Rh capture of LCT-079

Thank You For Your Attention!

Use of advanced optimization algorithms for the design of critical experiments - 09/11/2017

PROMETHEE Workbench

- Some feedback from criticality assessment engineering
 - Lot of time spent on computer dependent problems
 - Less time on safety and physics
 - Some issues seem too *expensive* to solve
 - Splitting problems (independency of variables), maybe oversimplifying safety analysis
- PROMETHEE project
 - Improve usability for real world computing
 - Computing task to become fast and easy
 - Reliable remote execution on largest computing resource available
 - Extend reachable engineering issues
 - Encapsulation of code as input/output numerical function (MCNP, SCALE-KENO, MORET, APOLLO, TRIPOLI, ...)
 - Provide robust algorithms toolbox for common use ([R] wrapping)
 - Monte Carlo sampling methods
 - EGO and ECEGO:

Optimization w/wo constraint

Design with 7uPCX rods

7uPCX rods without sleeves

