

Validation and Bias Quantification of Criticality Safety Codes for SRNS Operations

Scott Finfrock – David Erickson – Tracy Stover Savannah River Nuclear Solutions

2017 ANS NCSD Topical Meeting – Carlsbad, NM

SAVANNAH RIVER SITE • AIKEN • SC • WWW.SRS.GOV

SRNS-STI-2017-00513 Page 1 of 15

- SRNS Recently Completed a Full Re-Validation of our Criticality Safety Codes
- MCNP6.1 and SCALE6.1
- Required Several Person-Years to Complete
- Initiated in Response to a DOE Assessment
- Task was not Anticipated Impacted Program

Timeline

- Decision to Perform New Validation Fall 2013
 - All computers scheduled for replacement
 - Mandatory upgrade to operating system
 - Decided to update codes (from version 5 to version 6.1)
- Completed Computer System Updates Summer 2014
- Performed "Quick" Validation Summer 2014
- DOE Assessment Resulting in Negative Findings Fall 2014
- Re-started Validation Process Spring 2015
- Completed Re-Validation Summer 2016

- Out of Date Benchmark Descriptions
- Models did not Precisely Match Benchmark Specifications
- Inappropriate Rejection of Outliers
- Failure to Fully Describe Limits of AoA
- Less than Adequate Documentation

- Validation is an Infrequent Task
 - Maintaining continuity of staff is difficult
 - Limited opportunities for skill development
- Previous Validation Assumed to be Adequate
 - Task was given lower priority
 - Assigned to junior staff
 - Used a "fill in the blanks" approach
- Written Process Description was Incomplete and Difficult to Follow
- Differences in Interpretation of ANSI/ANS-8.24
 - Little supporting documentation
 - Largely unrecognized prior to DOE assessment

- Developed Guidelines for Interim Operations
- Established a Project Management Plan
- Developed a Written Guide for Performing Validations
- Developed a Technical Review Process Specifically for Validations
- Re-Created and Peer Reviewed Models for all Benchmarks
- Re-Validated all Materials and Systems
- Performed Peer Review on all Validations
- Issued New Validation Documents

- ANSI/ANS 8.1 Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors
 - "The validity of any method used to determine the subcritical state of a fissionable material system shall be established."
- ANSI/ANS 8.24 Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations
 - Identifies requirements for performing validations
- SRNS Governing Documents
 - Establishes Criticality Safety Program Compliant with Applicable Standards (including 8.1 and 8.24)

• Two Codes: MCNP6.1 and SCALE6.1

• Ten Materials/Systems

- Pu metal
- Pu oxide
- Pu nitrate solution
- Pu solution w/ Gadolinium
- HEU metal
- HEU oxide
- HEU solutions (uranyl nitrate)
- HEU solutions w/ Boron
- LEU
- MTR Fuel (uranium metal w/ Al clad, complex geometry)

- Identify Desired Area of Applicability
 - Typically based on an activity or facility
 - Code and hardware specific
- Benchmark Selection
 - Consider available benchmarks that closely align with desired AoA
- Modeling of the Benchmarks
 - Precise representation of benchmark specification (isotopics, geometry)
 - Ensure adequate convergence

- Bias Quantification (Calculational Margin)
 - Three methods typically used at SRS:
 - Lower Tolerance Band (LTB)
 - Lower Tolerance Limit (LTL)
 - Non Parametric Value Method (NPV)
 - Specific method selected according to a protocol:
 - Look for clear trend in data, if found then apply LTB
 - If no trend then test data for normality, if acceptable then apply LTL
 - If no trend, and data fails normality test, then apply NPV
 - Outlier Treatment

Bias Quantification Example

SRNS-STI-2017-00513 Page 11 of 15

• Determination Specific Area of Applicability

- Precise range of key parameters
 - Isotopics
 - Spectrum
 - *H/X*
 - etc

Develop Validation Document

- Clearly state approach
- Provide references for data
- Justify decisions and exceptions
- Present results in a clear and useful manner

Summary of Validation for Pu Solution Calculations with MCNP 6.1

Pu Solutions				
MCNP 6.1, ENDF/B-VII.1 (.80c)				
Method of determining k _{be} :				NPV
k _{be}				0.9884
AoA Ranges:				
Parameter	Units	Min	Max	Description
Fissionable Material	gPu/L	9.5	268.7	Pu in aqueous plutonium nitrate solution
Isotopics:				
²³⁹ Pu	wt %	59.2	100	
²⁴⁰ Pu	wt.%	0	22.88	
Neutron Spectrum (EALF)	eV	0	1	Thermal
Moderator:				A guages Solution - Sac moderator discussion
H/ ²³⁹ Pu	N/A	91.2	2802.8	Aqueous solution – see moderator discussion
Reflectors				None, partial water, full water, thin steel
Poisons				None
Temperature	Κ	270	340	

- MCNP6.1 and SCALE6.1 Successfully Re-Validated for use at SRS
- Significant Cost in Resources
- Some Negative Impact on Program and Operations

- Treat Validation Tasks as a Project
 - Written plan
 - Defined scope, schedule, and resources
- Have a Written Process for Performing Validations
 - Specify good engineering practices
 - Technical review
- Involve a Wide Array of People
 - Both junior and senior staff
 - Develop a skilled pool for next revision
- Take the Time to do it Right the First Time

SRNS-STI-2017-00513 Page 15 of 15