

VALIDATION OF MVP CODE WITH HTC CRITICAL EXPERIMENTS

Shigeki Shiba

Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R) shigeki_shiba@nsr.go.jp.

2017 NCSD Topical Meeting

September 10-15, 2017 | Carlsbad, NM | Pecos River Village Conference Center

Contents

- 1. Background and Objectives
- 2. HTC Experiments
- **3. Validation Results**
- 4. Discussions on Validation Results
- 5. Summary

September 10-15, 2017 | Carlsbad, NM | Pecos River Village Conference Center

Background and Objectives

2017 NCSD Topical Meeting September 10-15, 2017 | Carlsbad, NM | Pecos River Village Conference Center

Background and Objectives

- Continuous Energy Monte Carlo code MVP-2.0 was developed by JAEA*.
- MVP-2.0 code was mainly validated against fresh fuel experiments.
- Appropriate validation of MVP-2.0 code is required to apply criticality safety analysis for systems with burned fuel.
- Applicability of MVP-2.0 code for burnup fuel was assessed using HTC experiment data.
- * Japan Atomic Energy Agency

September 10-15, 2017 | Carlsbad, NM | Pecos River Village Conference Center

HTC Experiments

HTC Experiments: Main features

- Carried out during 1988-90 in the Valduc Critical Facilities of CEA, co-sponsored by IRSN and AREVA
 - Newly manufactured 2500 pins that simulate the actinide concentration of an burned PWR fuel up to 37.5 GWd/t were used.

HTC Experiments: Configurations

 Phase 1 and 2: Fuel rods with a varied fuel rod pitch are loaded in three types of solutions (pure water, gadolinium or boron solutions)

Phase 4: Lead or steel screens are attached to the Phase 3 configuration

Phase 3: Four assemblies each of which is surrounded by borated steel, Boral, or cadmium d pitch(1.6 cm

side panels.

HTC Experiments: Principal parameters

Phase	Parameters	Number of cases
1	Rod Pitch (1.3-2.3 cm) Fuel Rod number	18
2	Rod Pitch (1.3-1.9 cm) Poison concentration (Gd, B) in solution Fuel rod number	41
3	Assembly gap Side panels (BSS, Boral, Cd)	26
4	Assembly gap Screen position Side Panels (BSS, Boral, Cd) Screens (Lead, Steel)	71
		156

September 10-15, 2017 | Carlsbad, NM | Pecos River Village Conference Center

Calculation code

HISTORY : 40,000 BATCH : 250 SKIP : 50

JENDL-4.0

ENDF/B-VII.1

JEFF-3.2

September 10-15, 2017 | Carlsbad, NM | Pecos River Village Conference Center

Validation Results

Validation results: Phase 1 (Pure water)

Validation results: Phase 2 Gadolinium Solution

Validation results: Phase 2 Boron Solution

Boron concentration [g/l]

Nuclear data library	Keff	Standard deviation
JENDL-4.0	1.0010	0.0027
ENDF/B-VII.1	1.0000	0.0027
JEFF-3.2	0.9989	0.0028

Experimental uncertainties,

including the errors in controlling the boron concentration, are reported as large as tens hundreds of pcm in reactivity.

Hence, the large fluctuations

observed in the Phase 2

experiments are presumably

attributed to the experimental

uncertainties.

Validation results: Phase 3

Validation results: Phase 4 Lead Screen

Validation results: Phase 4 Steel Screen

September 10-15, 2017 | Carlsbad, NM | Pecos River Village Conference Center

Validation results: Comparison between the Nuclear Data Libraries

September 10-15, 2017 | Carlsbad, NM | Pecos River Village Conference Center

Discussions on Validation Results

2017 NCSD Topical Meeting September 10-15, 2017 | Carlsbad, NM | Pecos River Village Conference Center

Fission and Capture Reaction Rates

 In comparison with major reaction rates, JENDL-4.0 shows a 0.5% higher neutron production reaction rate in Pu-239 compared to ENDF/B-VII.

 ✓ JEFF- 3.2 shows smaller fission reaction rates for Pu-239, U-235, etc.

September 10-15, 2017 | Carlsbad, NM | Pecos River Village Conference Center

Summary of MVP calculations

- Positive biases were neglected to enhance the safety margin.
- MVP calculations resulted in small uncertainties over all Phases.

September 10-15, 2017 | Carlsbad, NM | Pecos River Village Conference Center

- MVP-2.0 code with major libraries has been validated using HTC experiment data.
- Applicability of MVP-2.0 code for actinideonly burnup fuel was confirmed and evaluated keff biases were within 300 pcm.
- We realized some differences in keff results between libraries through the validation task.
- Especially, keff results in JEFF-3.2 were underestimated.
- The differences in keff results are caused by differences in the fission reaction rate, etc.