IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Enhancing nuclear safety

INTRODUCTION OF PLUTONIUM SYSTEMS TO THE NUCLEAR CRITICALITY SLIDE RULE

Matthieu DULUC, Dave HEINRICHS, <u>Soon KIM</u>, Thomas MILLER, Cihangir CELIK, Calvin HOPPER, Alex BROWN, Chris WILSON and Marc TROISNE

Nuclear Criticality Accident

The release of energy as the result of inadvertently producing a self-sustaining or divergent fission chain reaction

Intense production of neutrons and gamma radiations

60 reported criticality accidents in the world

21 deaths

Slide rule?

April 1997, An Updated Nuclear Criticality Slide Rule

ORNL/TM-13322/V1 & V2: Technical Basis / Functional Slide Rule

This document gives order of magnitude estimates of key parameters, useful for emergency response teams and public authorities:

- The magnitude of the number of fissions based on personnel or field radiation measurements or various critical system parameter inputs,
- Neutron- and gamma-dose at variable unshielded distances from the accident,
- The skyshine component of the dose,
- Time-integrated radiation dose estimates,
- One-minute decay-gamma radiation dose,
- Dose-reduction factors for variable thicknesses of steel, concrete and water.

US Slide Rule

IRSN « Slide Rule »

ACCUMULATED

Solution of U(93.2)O₂(NO₃)₂ @ H/²³⁵U = 500

Long term DOE/NNSA NCSP - IRSN collaboration

NCSP wants to develop and maintain modern Slide Rule

Accident analysis:		Budget Priority Technical Priority	
Field-deployable emergency response methods on portable, handheld platform	Develop and maintain modern, accident analysis capability (SlideRule)		

IRSN wants to review and improve its "Slide Rule"

Proposal of a complete work, divided into several steps:

- Step 1: Redo with modern radiation transport tools, for the same configurations and assumptions, the calculations performed initially for the 1997 estimation of the doses
- Step 2: Perform additional configurations/calculations
 - New configurations (new geometry of the source, new fissile media including plutonium systems, etc.)
 - New flux-to-dose conversion factors

SN 🥿 millennium

Step 1: Slide Rule « Initial » Configuration

<u>Geometry</u>: One Air (sky) layer above a ~30 cm concrete layer (ground)

Source: Unreflected spherical uranium critical system – 1 meter over the ground

- $U(4.95)O_2F_2 (H/^{235}U = 410)$
- $U(5)O_2 (H/^{235}U = 200)$
- $U(93.2)O_2(NO3)_2 (H/^{235}U = 500)$
- U(93.2) metal
- $U(93.2)_3O_8 (H/^{235}U = 10)$

Dose Detection: 0.3 to 1200 meters between source and dose detection.

Originally, Slide Rule results from DORT (2-D deterministic code) with the Henderson flux-to-dose conversion factor

6

Step 1: Slide Rule « Initial » Configuration

MCNPscale 🕉

Codes used:

- MCNP 6.1
- SCALE 6.2
- COG 11.1

Various methods used:

- 1 step / 2 steps methods
- Size and shape of the detector
- Variance Reduction technics (WWG, CADIS, etc.)

But one:

- Cross-section library data: ENDF/B-VII.1 (CE)
- Flux-to-dose conversion factor: Henderson (1959)

2017 NCSD Topical Meeting - September 10-15, 2017 | Carlsbad, NM, USA

Step 2: "Introduction Of Plutonium Systems"

Geometry: One Air (sky) layer above a 50 cm concrete layer (ground)

Source: Plutonium critical system – 1 meter over the ground

Composition: ²³⁹Pu metal homogeneously mixed with water

 5 moderation ratios (H/²³⁹Pu): 0 (=metal), 10, 100, 900 and 2000

Geometry: bare sphere, bare cylinder, steel reflected sphere

Dose Detection: 0.3 to 1200 meters between source and dose detection.

Flux-to-dose conversion factors: ANSI/HPS N13.3 standard

Step 2: "Introduction Of Plutonium Systems"

Codes used:

- MCNP 6.1
- SCALE 6.2.1
- COG 11.2

Various methods used:

- 1 step / 2 steps methods
- Variance Reduction technics (ADVANTG, CADIS, etc.)

But one:

- Cross-section library data: ENDF/B-VII.1 (CE)
- Flux-to-dose conversion factor: ANSI/HPS N13.3 standard ("Dosimetry for Criticality Accidents", 2013)
- Kind of detector: a cylindrical shell with a square cross-section of 5 cm x 5 cm

Examples of prompt dose results shown for accidents that generate 10¹⁷ fissions

Bare sphere (prompt dose results)

10

Bare sphere (comparison between codes)

2017 NCSD Topical Meeting - September 10-15, 2017 | Carlsbad, NM, USA

Bare sphere (comparison between conversion factors)

2017 NCSD Topical Meeting - September 10-15, 2017 | Carlsbad, NM, USA

Ratio

Bare cylinder (prompt dose results for Pu metal (H/Pu=0))

Sphere surrounded by a steel reflector (prompt dose results for Pu metal (H/Pu=0))

2017 NCSD Topical Meeting - September 10-15, 2017 | Carlsbad, NM, USA

Conclusions and perspectives

Conclusions:

- Introduction of plutonium systems and new flux to dose conversion factors (more penalizing than the previous one)
- Prompt doses: consistency between modern codes with small discrepancies on prompt gamma due to the different codes gamma transport treatment of bremsstrahlung
- Bare cylinders: up to 30% compared to the bare sphere but approach, more or less quickly, to the sphere dose for long distances
- Steel reflector: deeply modifies doses and the effect depends on several parameters (distance, moderation ratio, type of radiation)
 - difficulties to attribute one reduction factor value to a given thickness of steel

Conclusions and perspectives

Perspectives:

- Finalization of Step 2 for prompt doses
- Calculation of delayed gamma doses for the Step 2
- Calculation of additional configurations (impact of multiple layers of shielding, of the thickness and the composition of the surrounding environment (ground, humidity of the air, etc.))
- Opportunity to create "computer benchmarks":
 - test and validate the various variance reduction methods
 - establish best practices for this kind of problems (e.g. fission source calculation)
- Opportunity to suggest new experiments for the validation of the tool (benchmarking effort)
- Then... beginning of the next Steps:
 - Step 3: review of the section regarding the estimation of the number of fissions
 - Step 4: addition of others sections (like actions to stop an on-going criticality accident)
 - Step 5: development of a Slide Rule "application" for a handheld device

IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Enhancing nuclear safety

Thank you for your attention

