Determination of Critical Experiment Correlations for Experiments Involving Highly Enriched Uranium Solutions

William Marshall

B. T. Rearden R. E. Pevey, University of Tennessee, Knoxville

NCSD 2017 Topical Meeting Carlsbad, New Mexico September 10–15, 2017

ORNL is managed by UT-Battelle for the US Department of Energy

Outline

- 1. A word on correlation coefficients and methodology
- 2. Experiments examined
- 3. Progression of uncertainties considered
- 4. Correlations considering:
 - Geometry uncertainties
 - Geometry and tank composition uncertainties
 - Geometry, tank composition, and enrichment uncertainties
 - All uncertainties (geometry, tank composition, enrichment, solution parameters)
- 5. Conclusions

Correlation coefficient calculation methodology

- Random sampling of virtually all input parameters
 - Including compositions and geometry
- 300 complete inputs are created for each experiment
- Components that are shared between or among experiments get the same sampled value in each realization
- Correlation coefficient is ratio of covariance to product of standard deviations of each individual experiment

$$\rho = \frac{\operatorname{cov}(x, y)}{\sigma_x \sigma_y}$$

 Essentially this is the fraction of total uncertainty shared between the two experiments

Experiments examined

- HST-001
- 10 experiments performed at Rocky Flats
- Simple, unreflected cylinders
- 4 tanks
 - 1 stainless steel tank (Cases 1 and 2)
 - 3 aluminum tanks (Cases 3 & 4, Cases 5-9, Case 10)
- 8 solutions
 - Cases 1 and 8 share a solution
 - Cases 4 and 9 share a solution

Progression of uncertainties considered

- Very simple models are used (relatively few uncertainties)
- Models are grouped into 4 categories
 - Geometry: Tank ID, thickness, solution height
 - Tank compositions (considered both independent and shared)
 - Solution enrichment (considered both independent and shared)
 - Solution parameters: U concentration, density, excess acid molarity
- Adding each group allows determination of important contributors
- The uncertainties could have been considered in a different order

Geometry uncertainties

Tank inner diameter

- 4 tanks were used, so inner diameter is identical in cases that shared tanks
- There is no reason to assume correlation of tank size between tanks
- Tank ID is a large contributor to uncertainty in the evaluation
- Tank thickness
 - The tank used in Cases 1 and 2 was stainless steel; other tanks aluminum
 - Section 2 of the evaluation provides different thickness tolerances for stainless steel plate and aluminum plate
 - Aluminum thickness was assumed to be the same, but it could be different
- Solution height
 - Unique in all 10 cases

Results – geometry uncertainties only

	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10
1-1	1	1.00	-0.02	-0.02	0.04	0.02	0.01	0.05	0.04	-0.06
1-2	1.00	1	-0.02	-0.02	0.04	0.02	0.01	0.05	0.04	-0.06
1-3	-0.02	-0.02	1	0.99	-0.03	-0.03	-0.02	-0.02	-0.04	0.04
1-4	-0.02	-0.02	0.99	1	-0.02	-0.03	-0.02	-0.02	-0.04	0.04
1-5	0.04	0.04	-0.03	-0.02	1	0.96	0.87	0.98	0.96	0.04
1-6	0.02	0.02	-0.03	-0.03	0.96	1	0.85	0.96	0.94	0.04
1-7	0.01	0.01	-0.02	-0.02	0.87	0.85	1	0.88	0.87	0.02
1-8	0.05	0.05	-0.02	-0.02	0.98	0.96	0.88	1	0.97	0.05
1-9	0.04	0.04	-0.04	-0.04	0.96	0.94	0.87	0.97	1	0.04
1-10	-0.06	-0.06	0.04	0.04	0.04	0.04	0.02	0.05	0.04	1

Note: Scale is green at minimum value (-0.06) to red at maximum value (1)

Adding tank composition uncertainties

- Stainless steel model contains several constituents
- Aluminum is modeled as pure aluminum with a reduced density
- Effects of tank composition uncertainty are expected to be small
- Aluminum impurities considered:
 - Unique in each of the three tanks (material from different lots)
 - Shared among all tanks (material drawn from same lot)
- No differences observed in correlation coefficients

Results – geometry and tank composition uncertainties

	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10
1-1	1	1.00	-0.02	-0.03	0.04	0.02	0.01	0.05	0.04	-0.06
1-2	1.00	1	-0.02	-0.03	0.04	0.02	0.01	0.05	0.04	-0.06
1-3	-0.02	-0.02	1	0.99	-0.02	-0.02	-0.02	-0.01	-0.03	0.05
1-4	-0.03	-0.03	0.99	1	-0.03	-0.02	-0.02	-0.02	-0.03	0.04
1-5	0.04	0.04	-0.02	-0.03	1	0.96	0.87	0.98	0.96	0.03
1-6	0.02	0.02	-0.02	-0.02	0.96	1	0.86	0.96	0.95	0.04
1-7	0.01	0.01	-0.02	-0.02	0.87	0.86	1	0.88	0.87	0.02
1-8	0.05	0.05	-0.01	-0.02	0.98	0.96	0.88	1	0.96	0.04
1-9	0.04	0.04	-0.03	-0.03	0.96	0.95	0.87	0.96	1	0.04
1-10	-0.06	-0.06	0.05	0.04	0.03	0.04	0.02	0.04	0.04	1

Unique tank compositions

Shared tank compositions

	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10
1-1	1	1.00	-0.02	-0.03	0.04	0.02	0.01	0.05	0.04	-0.06
1-2	1.00	1	-0.02	-0.03	0.04	0.03	0.01	0.05	0.04	-0.06
1-3	-0.02	-0.02	1	0.99	-0.02	-0.01	-0.02	-0.01	-0.04	0.05
1-4	-0.03	-0.03	0.99	1	-0.02	-0.02	-0.03	-0.01	-0.04	0.05
1-5	0.04	0.04	-0.02	-0.02	1	0.96	0.87	0.98	0.96	0.03
1-6	0.02	0.03	-0.01	-0.02	0.96	1	0.85	0.97	0.94	0.04
1-7	0.01	0.01	-0.02	-0.03	0.87	0.85	1	0.88	0.87	0.02
1-8	0.05	0.05	-0.01	-0.01	0.98	0.97	0.88	1	0.97	0.04
1-9	0.04	0.04	-0.04	-0.04	0.96	0.94	0.87	0.97	1	0.04
1-10	-0.06	-0.06	0.05	0.05	0.03	0.04	0.02	0.04	0.04	1

Note: Scale is green at minimum value (-0.06) to red at maximum value (1)

Adding enrichment uncertainties

- Evaluation did not report if the 8 solutions used were drawn from the same stock solution or different ones (recall that Cases 1 and 8 share a solution as do Cases 4 and 9)
- Enrichment could be different for each solution if drawn from unique stocks, different for some solutions if drawn from a few stocks, or identical if drawn from a single stock solution
- Again, enrichment uncertainties are considered uniquely for all solutions and shared across all solutions
- Considered geometry and shared tank composition uncertainties
- No significant differences were noted in correlation coefficients

Results – geometry, tank composition, enrichment uncertainties

Unique enrichments

	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10
1-1	1	1.00	-0.02	-0.02	0.04	0.02	0.02	0.05	0.04	-0.07
1-2	1.00	1	-0.02	-0.02	0.04	0.03	0.02	0.05	0.04	-0.07
1-3	-0.02	-0.02	1	0.99	-0.03	-0.03	-0.03	-0.02	-0.05	0.04
1-4	-0.02	-0.02	0.99	1	-0.03	-0.03	-0.03	-0.02	-0.03	0.04
1-5	0.04	0.04	-0.03	-0.03	1	0.96	0.87	0.98	0.96	0.04
1-6	0.02	0.03	-0.03	-0.03	0.96	1	0.85	0.96	0.94	0.05
1-7	0.02	0.02	-0.03	-0.03	0.87	0.85	1	0.88	0.86	0.02
1-8	0.05	0.05	-0.02	-0.02	0.98	0.96	0.88	1	0.96	0.04
1-9	0.04	0.04	-0.05	-0.03	0.96	0.94	0.86	0.96	1	0.04
1-10	-0.07	-0.07	0.04	0.04	0.04	0.05	0.02	0.04	0.04	1

Shared enrichments

	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10
1-1	1	1.00	-0.01	-0.02	0.05	0.02	0.01	0.05	0.04	-0.06
1-2	1.00	1	-0.01	-0.02	0.05	0.03	0.01	0.05	0.04	-0.06
1-3	-0.01	-0.01	1	0.99	-0.02	-0.02	-0.02	-0.01	-0.02	0.04
1-4	-0.02	-0.02	0.99	1	-0.02	-0.02	-0.02	-0.01	-0.02	0.04
1-5	0.05	0.05	-0.02	-0.02	1	0.96	0.87	0.98	0.96	0.04
1-6	0.02	0.03	-0.02	-0.02	0.96	1	0.85	0.96	0.94	0.04
1-7	0.01	0.01	-0.02	-0.02	0.87	0.85	1	0.88	0.87	0.02
1-8	0.05	0.05	-0.01	-0.01	0.98	0.96	0.88	1	0.96	0.04
1-9	0.04	0.04	-0.02	-0.02	0.96	0.94	0.87	0.96	1	0.03
1-10	-0.06	-0.06	0.04	0.04	0.04	0.04	0.02	0.04	0.03	1

Note: Scale is green at minimum value (-0.07) to red at maximum value (1)

- Solution parameters of uranium concentration, density, and excess acid molarity were added to geometry, shared tank composition, and shared enrichment uncertainty scenario
- Since all 8 solutions have different characteristics, there is no way these parameters could be correlated
- Therefore, only unique sampling was considered resulting in significant changes in correlation coefficients

Results – all uncertainties

Cases 1 and 8 share a solution but are in different tanks

Cases 4 and 9 share a solution but are in different tanks

Note: Scale is green at minimum value (-0.05) to red at maximum value (1)

- Case 1 uncertainty is dominated by tank radius and thickness uncertainties (0.521% Δk of 0.589 % Δk total)
- Solution parameters do not have enough uncertainty to significantly change correlation
- Tank uncertainties are much lower for Cases 4 and 9, so shared solution uncertainties can drive correlation

- The impact of shared uncertainty can vary greatly depending on other uncertainties in cases of interest
- The assumption of shared or unique uncertainties has no impact for parameters with small impact
- Comparison with reference results in the ICSBEP Handbook shows significant qualitative and quantitative differences
- Generally, correlations among solution systems are easier to analyze in detail than those in lattice systems due to the smaller number of parameters

Questions?

