

Sensitivity and uncertainty analysis for a combined depletion and criticality calculation chain of a BWR fuel assembly

F. Sommer, V. Hannstein, ANS NCSD 12.09.2017

Content

- Motivation
- Calculation chain
 - Irradiation model
 - Depletion calculation
 - Criticality calculation
- Results
- Summary and Conclusion

BWR – Motivation

- BWR characteristics
 - Radial and axial heterogeneous conditions:
 - Symmetries
 - part length fuel rods
 - Enrichment
 - Moderator density (void)
 →variable spectrum
 - Gadolinium fuel rods (strong neutron absorber)
 - → reactivity peak around ~ 10 GWd/tHM

http://www.westinghousenuclear.com/About/News/Features/View/ArticleId/21/SVEA-96-Optima-3

Calculation chain – Irradiation model

- Calculations chain:
 1D irradiation model 2D depletion calculation 3D criticality calculation
- Simplified, physically consistent model of typical axial profiles of BWR (24 zones)
 Power burnup moderator density
- Fit of core follow calculations with 4th order polynomials with coupled coefficients
- 5 cycles, each about 300 d, downtime = 60 d, decay period = 5 y
- Sampling of 2 independent coefficients (250 samples)
- Sensitivity and uncertainty analysis of k_{eff} in 3D transport cask on varied parameter

Calculation chain – Irradiation model

- Simplified use of control blades:
 - reduction of power and burnup by 35 % in zones with inserted control blade
 - Neutron absorption and modified spectrum by control blade in depletion model

Calculation chain – Depletion model

- Generic BWR FA, 10x10, diagonal symmetry
- 12 part length FRs (1/3, 2/3), varying enrichment
- 4 x 4 Gd-fuel rods
- Possibility of ¼ control blade (B₄C)
- 24 axial zones with equal height calculated separately
- 250 samples for SU-investigation
 - 6000 depletion calculations
- Depletion code:
 - HELIOS 1.12 (Studsvik)
 - deterministic 2D latice code (fast calculation for MC sampling)

Calculation chain – Criticality model

- Generic transport cask with 52 equal FA
- Flooded with water for criticality calculations
- Nuclear densities of 24 axial zones combined in one 3D criticality model
- 51 thousand nuclides per sample, in total 12.8 Mio nuclides
- Criticality code:
 - KENO-Va (SCALE 6.2.1)
 - ENDF/B-VII library
 - $\sigma_{MC} = 5*10^{-4}$

Results – Finding the burnup peak

- k_{eff} in flooded transport cask
- 1 cycle, constant power and void
- Increase of constant term of burnup profile
- Peak at 9.78 GWd/tHM, k_{eff} = 0,8326

Results – Finding most important axial zones

 Variation of mean profiles of power, burnup and void of each axial zone individually by 10 % → unphysical conditions accepted, but influence of individual zones on k_{eff}

Results – Irradiation model including geometric variations

- Application of irradiation model
- > k_{eff} has negative correlation with pow_0 \rightarrow burnup directly coupled to power
- > Last cycle has maximum impact
- pow_1 negligible correlation
- Fuel radius and outer cladding radius also impact k_{eff}

							cycle 5						
EALF	0.10	0.03	0.09	0.03	0.17	-0.03	-0.09	-0.06	0.08	0.03	0.87	0.39	-0.11
λ	0.11	0.07	0.10	-0.03	0.03	0.08	-0.01	0.14	0.17	0.12	0.36	0.81	-0.34
$\overline{\nu}$	0.23	0.31	0.42	0.26	0.60	-0.09	-0.19	-0.25	-0.22	-0.15	0.29	0.07	-0.06
k_{eff}	-0.27	-0.36	-0.40	-0.20	-0.50	0.02	0.07	0.09	0.16	0.10	0.48	-0.29	0.16
	pow0;0	pow0;1	pow0;2	pow0;3	pow0;4	pow1;0	pow1;1	pow1;2	pow1;3	pow1;4	[fuel	C clad out	d_{pitch}

GRS

Results – Irradiation model including control blade model

- One cycle, control blade inserted from below
- Reduction of k_{eff} with insertion of CB up to zone 18 (blue curve)
- No change with further insertion explainable with peak of fission density
- Homogeneous reduction of power and burnup as comparison (blue curve)

GRS

Irradiation model including control blade model – 2-5 cycles

- CB only inserted in the last cycle
- 2 Cycles: neglect of CB non-conservative
- 3 5 cycles: neglect of CB only non-conservative for insertion up to zone 23 or 24

Summary and conclusions

- Application of calculations chain:
 1D irradiation model 2D depletion calculation 3D criticality calculation
- With increasing burnup the region affecting k_{eff} migrates to the top three zones
 - Sensitivity study, fission density distribution
- Application of the irradiation model:
 - k_{eff} most sensitive on the constant term of the power of the last cycle (directly coupled to the burnup) and the fuel radius
 - Below and around the Gd-peak the neglect of CB is conservative
 - Above ~15 GWd/tHM CB might have to be considered due to a k_{eff} increase
 - with our used extreme CB scenarios
- We have shown the general feasibility of the chosen approach with generic models
- Next possible steps:
 - Coupling to thermohydraulic code or using actual core-follow data
 - Application to different fuel elements and transport cask designs, ideally based on data from manufacturers
 - Investigate more realistic CB histories

Thank you for your attention. Any questions?