ANS 2017 NCS Division Topical Meeting

INVESTIGATION OF REACTIVITY DIFFERENCES IN CYLINDER ARRAYS USING VARIOUS FILL GEOMETRIES WITH CONSTANT MASS

Quentin Newell URENCO USA Charlotta Sanders UNLV/Sanders Engineering

Howard R. Hughes College of ENGINEERING

Copyright © 2016 URENCO Limited

Overview

- Introduction
- Methodology
 - Computer Code
 - Modelling Scenarios
 - 30B Cylinders Completely Filled
 - 30B Cylinders Normally Filled (material in bottom of cylinder)
 - 30B Cylinders Completely Filled with Void Space
- Results
 - Reactivity Effects of Various UF₆ Cylinder Array Models
- Conclusions

- Ensuring systems stay subcritical is of utmost importance to the safe operation of a facility.
- Relatively straight forward for simple or isolated systems.
- Array configurations can be challenging and present hidden complications not seen in simpler systems.
 - Competing effects between interaction, moderation, and reflection
 - Characterization to any one given factor more difficult
 - Effects can lead to unanticipated trends in array systems

- Investigating different modeling configurations is vital to ensuring subcritical configurations.
 - Also helps capture the peak reactivity of the system
- The reactivity differences in cylinder arrays with constant mass using three different modeling techniques is investigated herein.
- Outcome helps demonstrate the capabilities of stacking UF₆ cylinders – increased storage options, reduced storage footprint, thus reduced facility cost.

Methodology

- Monte Carlo computer code MONK8A along with JEF2.2 cross section library was utilized.
 - 30 skipped cycles; 1,000 active cycles; 4,000 neutrons per cycle; 0.0005 standard deviation
- 30B cylinders were modeled with the following dimensions:
 - Diameter = 30 in.; Length = 76 in.; Nominal wall thickness = 0.5 in.
- Cylinders filled with 2,300kg of UF₆ at 6 wt% with an H/U=0.088.

Methodology

- Various UF₆ fill geometries considered.
 - Completely filled cylinder (reduced density)
 - Normally filled cylinder material in bottom of cylinder (density=5.075 g/cm³)
 - Completely filled cylinder mixed with void space (density=5.075 g/cm³)
- Cylinders evaluated in a semi-infinite (infinite x and y, four cylinders high in z) triangular pitch array.
 - Cylinder pitch inside array was varied between 0 and 20 cm
 - Mist density of 0.01 g/cm³ surrounding array

Modeling Scenarios

Completely Filled Cylinder Model

Scenario 1 Bounding case for 30B cylinder arrays

Nominally Filled Cylinder Model

Scenario 2

Represents homogenization (after heating UF₆ cylinder)

Completely Filled Cylinder Model with Void Space

Scenario 3

Results –30B Cylinder Array Models

Reactivity Results of Various UF₆ Cylinder Array Models Mist Density of 0.01 g/cm³

- Results indicate that Scenario 1 (completely filled cylinders) and Scenario 3 (completely filled cylinder; UF₆ mixed with void space) in an array configuration are statistically equivalent.
- Scenarios 1 and 3 produce higher reactivity compared to Scenario 2 (bottom filled cylinder).
 - Approximately $\Delta k_{eff} = 0.008$

Conclusions

- Three different modeling scenarios have been investigated:
 - 1. Completely filled cylinders with reduced density
 - 2. UF₆ on the bottom of cylinder at nominal density
 - 3. Completely filled cylinder mixed with void space at nominal density
- Highest reactivity of the 30B array system is produced when the UF₆ mass completely fills the cylinder (Scenarios 1 and 3).
 - Trend consistent with previous studies performed by ORNL (ORNL/TM-11947)
 - Additional studies performed by authors show that uniform, completely filled, modeling approach in an array configuration most reactive

Future Work

- Note that results herein are only for a cylinder fill mass of 2,300 kg (represents ANSI-N14.1 transportation fill limit) and one mist density/reflection condition.
 - Future work should determine if same trends exist with various mass and/or reflection conditions

The authors wish to thank URENCO USA for their support in performing this work

