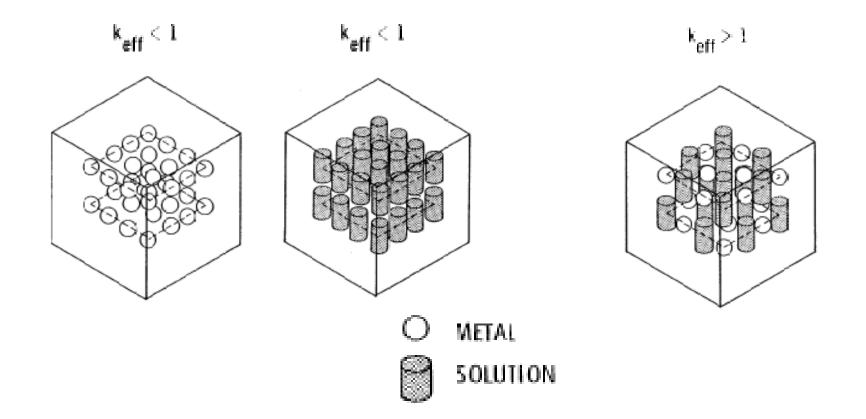
IRS IN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Which parameters might help to predict an impact on reactivity for mixed fissile units in a storage array? Paper n°22953

Mathieu MILIN¹ & Mariame SACKO²

¹ IRSN, France


² AUSY, France

NCSD 2017, Carlsbad, NM, USA, September 11th 2017

- Why such a study?
- Description of the calculation model
- Parameters studied:
 - Part 1: fissile medium
 - Part 2: geometry of the containment vessel
 - Part 3: structural material

Clayton's study on anomalies of nuclear criticality (1979)

Early in the past, the mixing effect has been well known.

Main conclusion of previous studies

According to previous studies, the following parameters have an impact on reactivity of mixed array:

- Neutron spectrum,
- Shape of fissile medium,
- Interstitial moderation,
- Structural materials.

But, in most storage in facilities, the packages (or fissile units) are very different:

- The content (metal, oxide, moderated...),
- The shape of the containment vessel (safe or unsafe geometry),
- The packaging materials (neutron poison...).

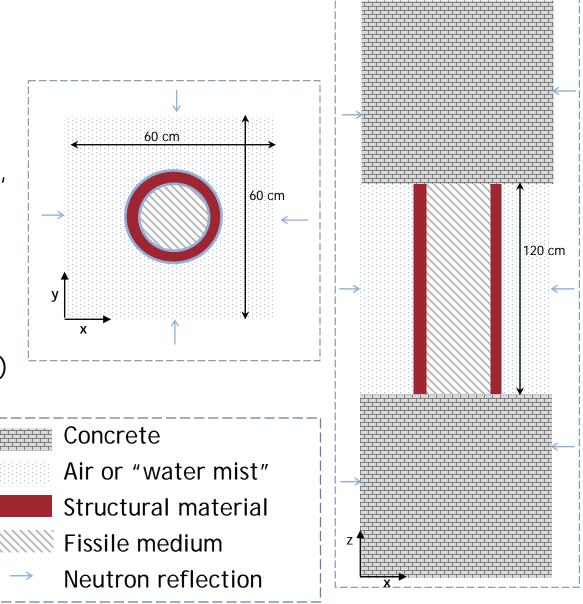
In such configuration, it is not possible to conclude easily and quickly on mixing effect.

Reason of this study

In calculation output (in this case APOLLO2-MORET 4 from CRISTAL V1.2), we have access to:

Keff with different estimators

ESTI. SOURCE-CHOC	0.94961 +/-	0.00044
ESTI. SOURCE-CORDE	0.94984 +/-	0.00052
ESTI. SOURCE-ABSORPTION	0.95012 +/-	0.00037
ESTI. BILAN-CHOC	0.95001 +/-	0.00037
ESTI. BILAN-CORDE	0.95005 +/-	0.00040
ESTI. BILAN-ABSORPTION	0.95012 +/-	0.00037


Mean energy of absorption, collision, fission in each volumes

But also:				
Dut also.				
	30 12.6959 +/- 0.013		0.1945E-04	
	ls it possible to u	ise these	output	0.22502-04
				~
	LF, % thermal (neutron energy > Dans tous les to predict n Distance parcourue (cm) / neutron = 0	nixing eff	fect?	rmal fission, etc
		0.94984 🤇		

- Why such a study?
- Description of the calculation model
- Parameters studied:
 - Part 1: fissile medium
 - Part 2: geometry of the containment vessel
 - Part 3: structural material

Calculation model

- Infinite planar array on 1 level
- Cylindrical shape for the containment vessel (Φ = 12 cm, H = 120 cm)
- Presence of structural material (only in part 3)
- 2 situations: either air or interstitial moderation ("mist") between packages
- Checkerboard arrangement for mixed arrays

7/24

NCSD 2017 - Which parameters might help to predict an impact on reactivity for mixed fissile units in a storage array?

- Why such a study?
- Description of the calculation model
- Parameters studied:
 - Part 1: fissile medium
 - Part 2: geometry of the containment vessel
 - Part 3: structural material

Part 1: fissile medium / description of fissile media

Name	Physical form	Moderator	Isotopic composition	Mass U+Pu (g)	Configuration studied	
Pu-mod	Metal	Water	100 % ²³⁹ Pu	461	Both	
U-mod	Metal	CH ₂ (d=0.96)	4 % ²³⁵ U		DULII	
UO ₂ -wet_A*	Oxide (d=3.5)	Water (10wt%)	26 % ²³⁵ U		Air	
UO ₂ -dry_A	Oxide (d=max)	None	24 % ²³⁵ U	No limit	All	
UO ₂ -wet_IM**	Oxide (d=3.5)	Water (10wt%)	15.5 % ²³⁵ U		Interstitial	
UO ₂ -dry_IM	Oxide (d=max)	None	11.5 % ²³⁵ U		moderation	

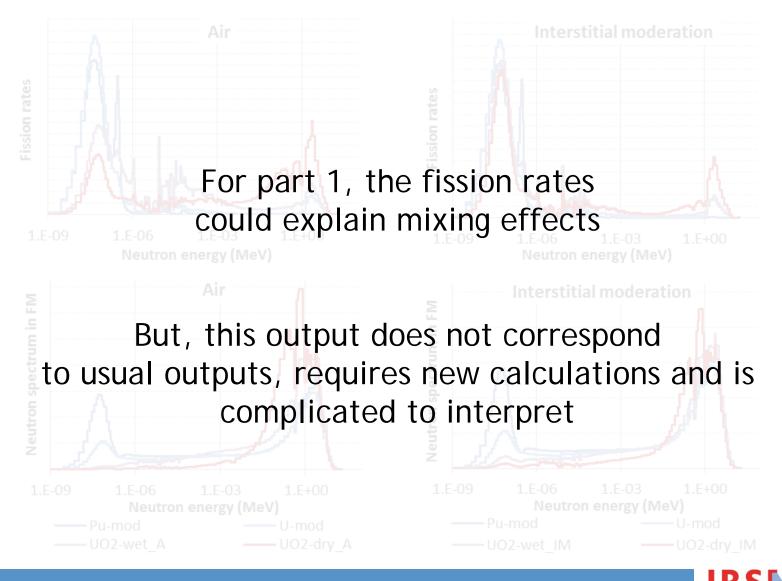
* Air ** Interstitial Moderation

Keff for non-mixed configuration ~ 0.950

All usual penalizing hypothesis are considered

NCSD 2017 - Which parameters might help to predict an impact on reactivity for mixed fissile units in a storage array?

Part 1: fissile medium / results


Result = Keff_mixed_units_AB - Max (Keff_unit_A, Keff_unit_B)

Air between fissile media									
Name	Pu-mod U-mod UO ₂ -wet_A UO ₂ -dry_A								
Pu-mod 0		-	-	-					
U-mod	0.5%	0	-	-					
UO ₂ -wet_A 4.5%		1.4%	0	-					
UO ₂ -dry_A	7.2%	3.1%	0.6%	0					

Interstitial moderation between fissile media									
NamePu-modU-modUO2-wet_IMUO2-dry_IM									
Pu-mod	0	-	-	-					
U-mod	0.5%	0	-	-					
UO_2 -wet_IM 1.0%		-0.6%	0	-					
UO ₂ -dry_IM	1.0%	-0.3%	0.1%	0					

Part 1: fissile medium / analysis of results

11/24

Part 1: fissile medium / analysis of results

Name	(eV)* all n		% thermal neutron in FM	% thermal fission***	Mean energy of collision in the interstitial area (eV)
Pu-mod	0.059	42%	32%	97%	1.5
U-mod	0.2	35%	20%	87%	2.7
UO ₂ -wet_A	8	24%	4.6%	56%	34
UO ₂ -dry_A	1230	20%	0.85%	30%	140
UO ₂ -wet_IM	0.75	40%	8.7%	77%	1.1
UO ₂ -dry_IM	7.4	41%	3.7%	65%	1.1

* Energy corresponding to Average Lethargy of neutrons causing Fission.
** Fraction of neutron with an energy lower than 4 eV in the whole model.
*** Fraction of fission due to neutron with an energy lower than 4 eV.

2 indicators seem to predict mixing effect for part 1:
% thermal neutron in all media
Mean energy of collision in the interstitial area

- Why such a study?
- Description of the calculation model
- Parameters studied:
 - Part 1: fissile medium
 - Part 2: geometry of the containment vessel
 - Part 3: structural material

Part 2: geometry / description of fissile media

Name	Diameter (cm)	Height (cm)	Isotopic composition	Mass U+Pu (g)	Configuration studied
Pu-mod_D8.5_A	8.5	120	100 % ²³⁹ Pu	1614	Air
Pu-mod_D12	12	120	100 % ²³⁹ Pu	461	Both
Pu-mod_H60	17	60	100 % ²³⁹ Pu	373	Both
Pu-mod_D17	17	120	50 % ²³⁹ Pu 50 % ^{nat} U	883	Both
Pu-mod_D8.5_IM	8.5	120	100 % ²³⁹ Pu	1396	Interstitial moderation
UO ₂ -dry_D12_A	12	120	24 % ²³⁵ U		
UO ₂ -dry_H60_A	17	60	23.8 % ²³⁵ U		Air
UO ₂ -dry_D17_A	17	120	13.2 % ²³⁵ U		
UO ₂ -dry_D24_A	24	120	9.1 % ²³⁵ U	No limit	
UO ₂ -dry_D12_IM	12	120	11.5 % ²³⁵ U		
UO ₂ -dry_H60_IM	17	60	18.5 % ²³⁵ U		Interstitial
UO ₂ -dry_D17_IM	17	120	5 % ²³⁵ U		moderation
UO ₂ -dry_D24_IM	24	120	3.2 % ²³⁵ U		

Keff for non-mixed configuration ~ 0.950

All usual penalizing hypothesis are considered

Part 2: geometry / results

Air between fissile media									
No	20 0		Pu-r	nod			U0 ₂	-dry	
Nai	ne	D8.5	D12	H60	D17	D12	H60	D17	D24
	D8.5	0							
Pu-mod	D12	1.1%	0						
n-nc	H60	1.7%	0.2%	0					
	D17	2%	0.1%	0.1%	0				
	D12	2.6%	7.2%	7.4%	9%	0			
-dry	H60	2%	5.6%	5.9%	7.1%	0.1%	0		
UO ₂ -dry	D17	4.2%	9.1%	9.2%	11.3%	0.3%	0.5%	0	
	D24	5.4%	10.4%	10.4%	12.7%	0.8%	1%	0.2%	0

High effect for mixed array of moderated and dry units. No/limited mixing effect for array with only moderated or dry units

→ Mixing effect only due to geometry is not observed.

Part 2: geometry / results

	Interstitial moderation between fissile media								
Name			Pu-r	nod			UO ₂	-dry	
INA	ne	D8.5	D12	H60	D17	D12	H60	D17	D24
	D8.5	0							
Pu-mod	D12	0.5%	0						
I-nc	H60	1%	0.2%	0					
	D17	1.6%	0.1%	0.1%	0				
	D12	-0.9%	1%	2%	3.9%	0			
-dry	H60	0.1%	2.8%	3.4%	5%	0%	0		
UO ₂ -dry	D17	-0.5%	0.7%	1.4%	3.3%	0%	-0.1%	0	
	D24	-0.1%	0.7%	1.2%	2%	0.1%	-0.2%	-0.2%	0

Contrary to part 1, there is still a mixing effect in some cases when interstitial moderation is considered between units.

Part 2: geometry / analysis of results

Name	EALF (eV)	% thermal flux in all media	% thermal flux in FM	% thermal fission	Mean energy of collision in the interstitial area (eV)
Pu-mod_D8.5_A	0.24	31%	11%	88%	5.3
Pu-mod_D12	0.059	42%	32%	97%	1.5
Pu-mod_H60	0.054	45%	36%	97%	1.4
Pu-mod_D17	0.046	49%	45%	97%	1.1
Pu-mod_D8.5_IM	0.18	40%	13%	90%	1.8
UO ₂ -dry_D12_A	1230	20%	0.85%	30%	140
UO ₂ -dry_H60_A	1850	22%	0.73%	25%	410
UO ₂ -dry_D17_A	1560	18%	0.88%	21%	530
UO ₂ -dry_D24_A	3310	17%	0.72%	16%	1000
UO ₂ -dry_D12_IM	7.5	41%	3.7%	65%	1.1
UO ₂ -dry_H60_IM	68	38%	1.7%	50%	1.2
UO ₂ -dry_D17_IM	5.9	42%	5%	67%	1.0
UO ₂ -dry_D24_IM	8.3	41%	5.2%	66%	1.0

Based on these spectrum indicators, it is possible to classify units which explain the presence or absence of mixing effect.

But, indicators of part 1 do not explain part 2 results.

- Why such a study?
- Description of the calculation model
- Parameters studied:
 - Part 1: fissile medium
 - Part 2: geometry of the containment vessel
 - Part 3: structural material

Part 3: structural material / fissile media

Name	Structural material	Isotopic composition	Mass U+Pu (g)	Configuration studied
PuO ₂ -mod-No	-	100 % ²³⁹ Pu	461	
PuO ₂ -mod-steel	Stainless steel (0.5 cm)	100 % ²³⁹ Pu	604	Air
PuO ₂ -mod-poison	uO ₂ -mod-poison Colemanite concrete (2 cm)		13911	Air
PuO ₂ -mod-CH ₂	d-CH ₂ Polyethylene (2 cm)		631	
UO ₂ -dry-No_A	-	24 % ²³⁵ U		Air
UO ₂ -dry-steel_A	Stainless steel	30 % ²³⁵ U		All
UO ₂ -dry -poison	Colemanite concrete (2 cm)	61 % ²³⁵ U	No limit	Air
UO ₂ -dry -CH ₂	Polyethylene (2 cm)	19.25 % ²³⁵ U		All
UO ₂ -dry-No_IM -		11.5 % ²³⁵ U		Interstitial
UO ₂ -dry-steel_IM	Stainless steel (0.5 cm)	26.25 % ²³⁵ U		moderation

Keff for non-mixed configuration ~ 0.950

All usual penalizing hypothesis are considered

NCSD 2017 - Which parameters might help to predict an impact on reactivity for mixed fissile units in a storage array?

Part 3: structural material / results

Air between fissile media									
Nar	2 0		PuO ₂	₂ -mod			UO_2 -d	ry	
INdi	ne	No	Steel	Poison	CH ₂	No_A	Steel_A	Poison	CH_2
	No	0							
O_2^{-}	Steel	-0.6%	0						
PuO ₂ . mod	Poison	-5.6%	-3.6%	0					
	CH ₂	1.7%	0.8%	-4.3%	0				
, V	No_A	7.1%	6.6%	1.3%	14%	0			
-dr	Steel_A	3.9%	4.1%	0.8%	9.3%	0.1%	0		
UO ₂ -dry	Poison	-7.4%	-4.7%	0.2%	-5%	-0.4%	-0.8%	0	
	CH_2	0.6%	0%	-4.9%	0.5%	9.5%	5.5%	-6.8%	0

Interstitial moderation between fissile media										
Name	PuO ₂ -mod				UO ₂ -dry					
	No	Steel	Poison	CH_2	No_IM	Steel_IM	Poison	CH_2		
UO ₂ -dry_No_IM	1%	0.6%	-2.9%	9.4%	0	-0.5%	-5.6%	3.6%		
UO ₂ -dry_Steel_IM	2.3%	2.6%	-0.3%	8.2%	-0.5%	0	-2.3%	4.1%		

Steel has a limited effect compared to no material.

The presence of neutron poison leads to a negative mixing effect.

Hydrogenated material may lead to a high positive mixing effect.

Part 3: structural material / analysis of results

Name	EALF (eV)	% thermal flux in all media	% thermal flux in FM	% thermal fission	Mean energy of collision in the interstitial area (eV)
PuO ₂ -mod-No	0.059	42%	32%	97%	1.5
PuO ₂ -mod-steel	0.072	36%	27%	97%	2.6
PuO ₂ -mod-poison	9.2	20%	4.4%	56%	81
PuO ₂ -mod-CH ₂	0.059	56%	31%	97%	0.93
UO ₂ -dry-No_A	1240	20%	0.86%	30%	140
UO ₂ -dry-steel_A	4250	21%	0.59%	23%	68
UO ₂ -dry -poison	98200	19%	0.07%	1.6%	210
UO ₂ -dry -CH ₂	32.7	47%	2.5%	47%	1.2
UO ₂ -dry-No_IM	7.5	41%	3.7%	65%	1.1
UO ₂ -dry-steel_IM	232	33%	1.3%	41%	1.7

Few differences in spectra indicators between steel and no material.

No spectrum indicators could predict alone a mixing effect.

When air is present between fissile units, indicators of part 1 seem good predictors of "mixing effects"

Conclusion

Mixing effect only due to geometry is not observed.

Interstitial moderation between fissile media does not nullify mixing effect.

Based on a comparison of several spectrum indicators, it seems possible to predict mixing effect.

Conclusion

But, no spectrum indicators, present in the usual output results of CRISTAL V1.2, could predict alone the mixing effect.

Another spectrum parameter which provides indication on the energy of neutron in the interstitial area could be tested.

Such indicators are not easily accessible in usual results from APOLLO2-MORET 4 (CRISTAL V1.2 package) but are directly accessible in results files of new APOLLO2-MORET 5 (CRISTAL V2 package).

23/24

Thank you for your attention

Question?

24/24

