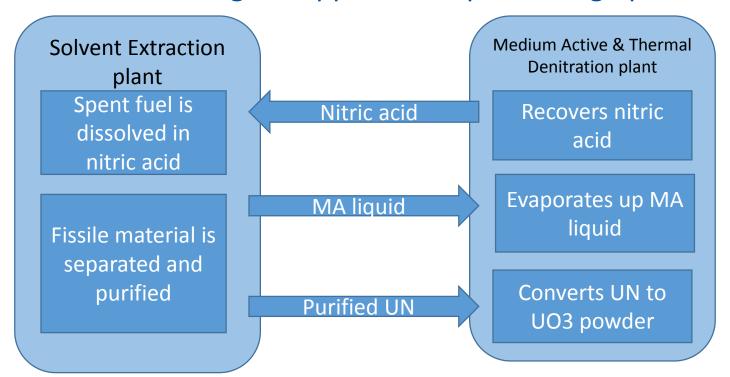
Sellafield Ltd


A Novel Approach to Criticality Accident Detection for a Legacy Facility

Andy Sutton, Sellafield Ltd

Magnox Reprocessing - Operating since the 1960s

Need both running to support UK reprocessing operations

A number of credible criticality faults

No criticality hazard – U enrichment too low

Historic Position for MA plant

- No criticality hazard expected in MA plant, so no standard Criticality Accident Alarm System (CAAS) installed
- Review of faults in Solvent Extraction Plant identified existing credible scenario (with suitable protections already in place) resulting in potential criticality hazard downstream in MA plant
- UK custom and practise is to then install a standard CAAS, or justify why one is not required – Criticality Incident Detection (CID) Omission Case

CID Omission

- Standard CAAS is not required if
 - i) In the absence of all controls, a criticality will not reasonably be expected
 - ii) In the event of the maximum foreseeable excursion the dose to operator <100mSv
- CID Omission Case couldn't be made
 - Criticality reasonably expected
 - No bulk shielding, operators in plant areas routinely
- Old plant, not designed with standard CAAS in mind
 - Very low risk of criticality (significant defence in depth)
 - Very difficult, time consuming and expensive to install one
 - Remaining plant lifetime < 5 years

Stuck in a Safety Assessment loop

A CID Omission Case can't be made, therefore...

Review basis for a CID Omission Case, but...

The MA plant needs a CAAS, but...

Installing a standard CAAS doesn't feel like the right thing to do, so...

Legal requirements

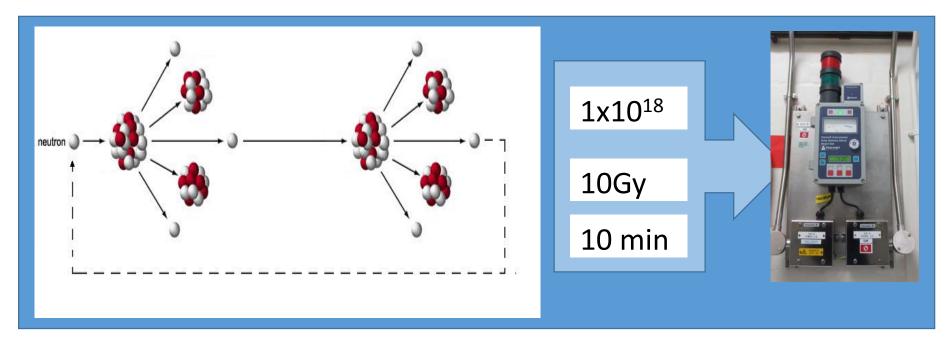
- As part of the Nuclear Site License Conditions, required to have an Emergency Plan
- MA plant didn't have one for criticality
 - Regulator interest

 Decision taken that plant would not restart without emergency plan in place

Emergency Plan

- Emergency plan could involve response to standard CAAS
- Still didn't feel like the right thing to do
 - Major work, time challenges, cost vs. remaining plant lifetime of <5 years
- BUT, still need emergency plan to restart
 - Can't reprocess Magnox fuel without MA plant
 - Reprocessing this fuel represents major risk reduction for UK

Emergency Plan (2)

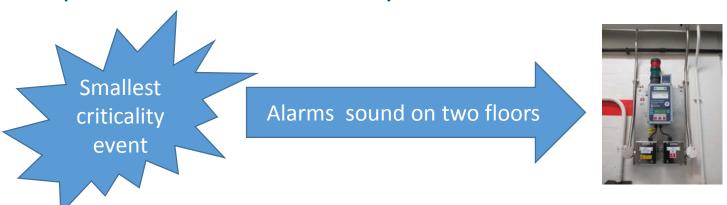

- MA plant has existing Area Gamma Monitor Network...
- At Sellafield, criticality detectors are gamma monitors...

Developing an Emergency Plan (1)

- Seemed most appropriate to use existing gamma monitor system to provide novel CAAS
 - Very unusual as accepted custom and practise is to install a standard CAAS if CID Omission Case cannot be made
- Some issues to resolve first
 - Can monitors detect all incidents of concern?
 - Can they survive long enough to alarm?
 - Can they resolve difference between criticality and radiological event?
- Remember, no MA plant no Reprocessing
 - Questions need to be answered swiftly

Developing an Emergency Plan (2)

- Normally assume 2x10¹⁹ total fission yield for CAAS deployment
- Low reactivity insertion rate, historical evidence from solution accidents, likely plant conditions
- Hence existing gamma monitors would detect criticality


Developing an Emergency Plan (3)

- Next question how to broadcast evacuation signal?
- Current gamma monitors not linked to existing MA plant loudspeakers
- Linked recording of criticality evacuation alarm to system
 - Control Room Operator initiated rather than automatic
- Off-the-shelf MP3 player used!

Developing an Emergency Plan (4)

How do operators know a criticality event has occurred?

Bigger criticality event

Alarms sound on multiple floors

Criticality risk vs. other risks

- Criticality risk in MA evaporator low
 - Defence in depth in Reprocessing Plant (both safety case and operational) to prevent losses to MA plant
 - MA routes to MA evaporator known, robust protections in place to prevent high fissile content
- Significant impact on UK risk reduction if no Magnox Reprocessing
- Installation of standard CAAS would have large impact in terms of time and cost, further delaying overall risk reduction
- Gap in proposed novel CAAS and standard CAAS small
- Remaining operational lifetime of MA plant <5 years

Final Decision

- Argument presented to plant owner to make informed decision to restart plant under the novel CAAS arrangements.
- Also endorsed by UK regulator

Overall timescale

From start to finish ~3 weeks

Emergency Instructions

Criticality Contour

Emergency Exercise

Evacuation Signage

Audibility Tests

Alarm Response Instructions

Safety Case Review

Training and Briefing

Criticality Alarm Broadcast

Evacuation Zone

Evacuation Routes

Criticality Yield Analysis

Safety Committee

Integrate - Site Arrangements

Questions?

